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Abstract

Pricing algorithms, especially reinforcement learning algorithms, have been widely

used in the past decades for firms in competitive markets, which are very helpful for

firms to capture more information of the market and their rivals. Existing literature has

shown that, however, reinforcement learning algorithms could lead to supracompetitive

prices without any communication between firms. In a framework of price competition

between two firms both starting with a rule-based algorithm, we show evidence that

(1) if one firm is competing using a reinforcement learning algorithm with a rule-based

rival, the price is always going to weakly increase, and (2) if both firms are adopting,

the one that adopts later would benefit more, and supracompetitive prices are obtained

but the price change is ambiguous compared to the initial case. Our findings contribute

to the literature by highlighting the importance of the order of algorithm adoption and

the transition from rule-based algorithm to reinforcement learning algorithm, which

makes it possible to compare the result with previous steady state in a more general

case.
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1 Introduction

Reinforcement learning algorithms have been widely used to price goods and services in

competitive markets. With the help of learning algorithms, especially reinforcement learning

(RL) algorithms, firms are capable of learning and discovering more information about the

market demand and pricing rules.

However, recent empirical and simulation studies have shown that algorithms may learn

and maintain supracompetitive prices (price that’s above the competitive level), but current

antitrust policy is not able to regulate this tacit collusion. On the simulation experiments

side, Calvano et al. (2020b) demonstrates that algorithmic pricing adopted by competing,

profit maximizing firms can lead to substantially higher prices than their competitive counter-

parts in a repeated simultaneous game. Klein (2021) shows the similar result in a sequential

game. On the empirical side, Assad et al. (2024), Asker et al. (2023) provides empirical evi-

dence of algorithmic collusion in Germany’s retail gasoline markets. If all firms in a market

adopt algorithm, the gas stations’ markup is increased by 20 to 30%. They also show that

a hybrid market has no significant change. 1

The recent development in algorithmic pricing raises concerns regarding the possibility of

algorithmic collusion by government authorities, but it is still an open question how algorith-

mic collusion could be regulated. On the one hand, authorities could detect and punish firms

that collude with algorithms afterwards. Calvano et al. (2020a) suggests that the authorities

identify the collusive pricing rules by checking properties of prices derived from economic

theory and studies of human collusion. On the other hand, authorities could set regulations

that forbid firms from activities that could highly likely lead to collusion. Harrington Jr

(2023) suggests regulation on no communication between third-party algorithm company

with several different firms in the same market. Johnson et al. (2023) shows how platform

could incentivize sellers so that they will not choose to set prices that are higher. In this

paper, we will follow the second way and see whether no agreement on adopting algorithm

would help with reducing the probability of collusion.

1The empirical evidence is indirect because the time of adoption of the pricing algorithms is not observed

but inferred. The main evidence is the change of firms’ pricing frequency.
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One part of the algorithmic pricing phenomenon that may be relevant for the discussion

on how to regulate collusion and that has not been studied is that firms may adopt pricing

algorithms at different times. In real life, firms are not able to adopt pricing algorithms at

the same time without communication, because current development of computer science

is not able to detect the kind of algorithm that the rival is using. This raises the question

of whether these supracompetitive prices are still going to be achieved just like the case

where the algorithms start at the same time. Current regulation is able to capture this tacit

collusion if supracompetitive is not achieved any more when firms adopt at different times,

which would make it less of concern.

This paper answers what the equilibrium will be if firms adopt pricing algorithms at

different times. We develop a model of pricing and use it to give predictions of how the

pricing algorithms interact with each other. We then introduce Q-learning, which is a widely

used reinforcement learning algorithm, in order to simulate firms’ pricing in real life. We

find that the price will always weakly increase when the first algorithm is adopted and

supracompetitive prices do occur in the scenario when firms adopt prices at different times.

This suggests that current regulation cannot address this tacit collusion.

We begin by developing an economic model to show theoretical predictions of our simu-

lations. We start with a small market with small firms that have limited information about

their rival and the market. In real life, for example, many third-party sellers on platforms

like Amazon are not able to know the other sellers who are selling the identical product with

him and how they set their prices. Therefore, they are not able to respond optimally without

the help of a learning algorithm and set prices according to a simple rule. This simple rule

could refer to platform preset rules, such as Amazon, as discussed in Wang et al. (2023),

Brown and MacKay (2023) and Chen et al. (2016). Traditional competing strategies that

are widely used, such as price trigger and grim trigger, could also be considered as a simple

rule that could be written as a function of rival’s price. We will see then if there is one firm

in the market that could completely learn the rival’s rule, then there will never be a price

drop.

For our simulations of how prices are set, we use Q-learning as the algorithm adopted by

firms. Q-learning is designed for the Markov decision process with finite state and action sets,
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where in a single agent problem described in our model, the Markov process is stationary and

convergence is maintained. Q learning also links perfectly with the dynamic programming

in Economics, which gives the result a very good economic interpretation.

Using Q learning and following the setup of our model, we observe a weak increase in

price for any rule in our simulation, which is consistent with our model. We choose three rule-

based strategies that are most popular in real life and research, which all satisfy assumptions

in our model. We showed that when the first firm starts adopting an algorithm, the price

will weakly increase given enough time periods. If the second firm also adopts, however, the

price change becomes ambiguous.

The main contribution of our paper to the literature on algorithmic pricing is to in-

vestigate how the order of adoption matters and how algorithm interact with rules. As we

discussed above, the existing literature has focused on algorithmic collusion when algorithms

start at the same time (see Calvano et al. (2020b), Asker et al. (2023), Klein (2021)). We are

also able to compare the supracompetitive price with the steady states before any algorithm

enters instead of the static Bertrand Nash equilibrium. Another contribution of our paper

is to show the transition of firms’ pricing strategies from rule-based rival to algorithm rival.

Chen et al. (2016), Wang et al. (2023) have compared the Rule-RL versus RL-RL but fail

to capture how algorithms’ learning path could be affected by the history.

The outline of the remaining paper is as follows. Section 3 summarizes the Q-learning, a

reinforcement learning method. Section 2 presents a model to describe competition of firms

and theoretical evidence on how algorithms would respond to rules. Section 4 discusses the

simulation results, and Section 5 concludes.

2 Economic Model

In this section, we develop an economic model to show theoretical predictions of our simula-

tions. We focus on a small market with small firms that have limited information about their

rival and the market. We show that if there is one firm in the market that could completely

learn the rival’s rule, then there will never be a price drop.

We start with the case where no firms are using RL algorithms. Consider a infinitely
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Firm 1: Rule RL RL

Firm 2: Rule Rule RL

0 time

Table 1: The timing of firms’ adoption of algorithm

repeated incomplete information game in which n = 2 symmetric firms act simultaneously.

Time periods are indexed discretely by t ∈ {1, 2, . . . , }. In each period t, firm i earns a profit

πi(pi,t, pj,t) = (pi,t − c) ∗ qi,t(pi,t, pj,t),

where c = 1 is the constant marginal cost, and qi,t is the logit demand

qi,t(pi,t, pj,t) =
e

γi−pi,t
µ∑n

j=1 e
γj−pj,t

µ + e
γ0
µ

.

In a small market, firms are not able to respond optimally since they have limited in-

formation about their rival and the market without the help of an RL algorithm. Before

time 0, firms were competing with an exogenous simple rule pi,t = pi(pj,t−1), which is a pure

strategy. Since firms are symmetric, we also assume that their strategies are symmetric, i.e.,

pi = pj. At time 0, without loss of generality, firm 1 adopts a reinforcement learning (RL)

algorithm. Firm 2 has no information about this and keeps the same rule until t2. We call

t < 0 as pre period, 0 ≤ t < t2 as peri period, and t ≥ t2 as post period. The process is

shown in Table 2.

Peri period In the absence of RL algorithms, assume firms were in a steady state (p0, p0)

before time 0, i.e., in the pre period. Given the assumption above, a necessary condition is

p1(p0) = p2(p0) = p0.

Suppose that firm 1 instead has complete information about firm 2. If there exists a p∗1 such

that, for any available price p′, we have

π1(p
∗
1, p2(p

∗
1)) ≥ π1(p

′, p2(p
′)),
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and equality holds if and only if p∗1 = p′. Then, the optimal price of firm 1 will be p∗1 instead

of p0 and the new steady state is (p∗1, p2(p
∗
1)). The relationship between p∗1 and p0, however,

is ambiguous. To see more about this relation, we impose the following assumptions.

Assumption 1. Define pN to be the static Bertrand Nash equilibrium price, and pM to be

the static monopoly price, i.e.,

pN = argmax
p

π1

(
p, pN

)
pM = argmax

p
π1(p, p)

For any p ∈ [pN , pM ]

i. p2(p) ≤ p.

ii. π1(p, p) is non-decreasing.

iii. p2(p) is non-decreasing.

The assumptions above are satisfied in most real life examples and widely used theoretical

models. Assumption i. means that the strategy is “competitive”. In real life, it’s usually

irrational to choose a price that would be higher than the rival in a steady state if the firm

has no information about it’s rival’s price and the rival’s price is rational, i.e., p ∈ [pN , pM ].

Notice that this assumption only works when firm has limit information about the rival’s

strategy. For example, it would happen that p∗1 > p2(p
∗
1) because firm 1 has complete

information.

Assumption ii. is a weaker condition of concave monopoly profit, which would work for

most of the commonly used demand functions. Assumption iii. means that since firms have

limited information, it’d be better to follow the rival and raise price when they increase.

Proposition 1. Given Assumption i. and ii., p∗1 ≥ p0. Further with Assumption iii., p∗2 ≥ p0.

Therefore, if the algorithm is able to fully learn the rival’s strategy, then there must be

a price increase in peri period compared to pre period.

We take three typical rules as example: myopic, price undercut and price trigger. The

rules are defined as follows.
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• Myopic

pi(pj,t−1) = argmax
pi,t

πi,t(pi,t, pj,t−1)

• Undercut

pi(pj,t−1) =

pj,t−1 −∆p if pj,t−1 > pN

pN o.w.

• Price trigger

pi(pj,t−1) =

pM if pj,t−1 = pM

pN o.w.

where pN is the static Bertrand price, pM is the static monopoly price. All three could lead

to steady state where both firms price the same as static Bertrand price. Price trigger could

also lead to static monopoly price, if firms start at some specific state. These steady states

are not guaranteed to be equilibrium, especially with logit demand. Firms, however, are not

able to deviate since they can only observe their rival’s action but not strategy.

3 Q-learning

3.1 Single Agent Problems

The reinforcement learning (RL) algorithm we use is Q-learning. Due to the learning pro-

cedure, Q-learning is not as fast as other RL, but since it’s motivated by the dynamic

programming problem, Q-learning has a good economic interpretation.

Consider first a stationary Markov decision process. In each period t = 0, 1, 2, . . . , an

agent observes a state st ∈ S and then chooses an action at ∈ A. Both S and A are time-

invariant and A is state-independent. Agent receives a payoff πt = π(st, at), which could be

random, at each period t, then the system moves on to the next state st+1.

Let a∗(s) represent an optimal policy. The decision-maker’s problem is to maximize the

expected present value of discounted payoff:

E

[
∞∑
t=0

δtπt

]
= E

[
∞∑
t=0

δtπ(st, a
∗(st))

]
,
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where δ < 1 represents the discount factor. Let V (s) denote the value of being in state s

V (s) = max
a∈A

{
E[π|s, a] + δ E[V (s′)|s, a]

}
,

which represent the maximum discounted payoff in state s, and Q(s, a) be the choice specific

value function

Q(s, a) = E[π|s, a] + δ E
[
max
a′∈A

Q(s′, a′)|s, a
]
,

which represent the future discounted payoff of taking action a at state s and choose optimal

policy function a∗(s) in the future. Notice that Q-function is related to the value function

by

V (s) = max
a∈A

Q(s, a).

Q-learning could deal with the case where both state and action are finite. In such a case,

Q-function collapses to a matrix. If the Q-matrix were known, the optimization problem

could be solved by searching the maximizer of the specific row of Q-matrix corresponding to

state s, or

a∗(s) = argmax
a∈A

Q(s, a).

Therefore, as long as the Q-matrix is known, without knowing any underlying model, the

agent is able to solve the optimization problem. Q-learning is the algorithm that estimates

the Q-matrix using the following iterative procedure. Starting from an arbitrary initial

matrixQ0, the algorithm chooses an action at at state st for each time period. After observing

the payoff πt, the algorithm will update one cell of Q-matrix according to the following

learning rule:

Qt+1(s, a) = (1− α)Qt(s, a) + α

[
πt + δmax

a∈A
Qt(s

′, a)

]
,

where the weight α ∈ [0, 1] is a step-size parameter, which influences the learning rate. For

all other cells s ̸= st and a ̸= at, the Q-value does not change. Since α is constant, the

algorithm actually puts more weight on recent observations.

If the agent doesn’t have a good expectation of Q-matrix, it’s very likely that the initial

matrix Q0 is very different from Q. For state s and an action a′ ̸= a∗, such that Q(s, a′) <

Q(s, a∗), so it’s not the optimal action at state s. If there exist s, a such that Q0(s, a
∗) <

Q(s, a′) and Q0(s, a
∗) < Q0(s, a

′), so Q0(s, a
∗) < Qt(s, a

′) and Qt(s, a
∗) = Q0(s, a

∗) for any
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t, because it never updates Qt(s, a
∗). In this case, the algorithm will never learn that a∗ is

the optimal action at state s.

In order to estimate a∗ and Q-matrix from an arbitrary initial matrix Q0, the algorithm

should be allowed to “make mistakes”, or to explore non-optimal actions. The method we

use in our analysis is the ε-greedy model, works as follows. The algorithm exploits (chooses

the currently optimal action) with probability 1 − ε and to explore (randomize uniformly

across all actions) with probability ε. The probability ε decays with time and is assumed to

be ε = e−βt, with β > 0.

3.2 Repeated Game

In a repeated game, stationarity is usually not satisfied. The state transition depends on the

previous or current action of all players. Although convergence is not guaranteed ex ante,

it can be verified ex post. In our simulation, convergence is achieved if for all players, their

optimal policy function does not change for 105 consecutive periods. It diverges if it does

not converge after 108 periods.

The initial Q0 is set at the discounted payoff that would accrue to player i if opponents

randomized uniformly and there’s no antitrust agency:

Qi,0 (s, ai) =

∑
a−i∈An−1 πi (ai, a−i)

(1− δ)|A|n−1
.

The visualized procedure of Q-learning is shown in Table 2.

4 Simulation Results

4.1 Parametrization

In our simulation, we follow the assumption that the firms are symmetric, and share a

constant marginal cost c = 1. The vertical differentiation γi = 2, γ = 0, and horizontal

differentiation µ = 1/4. The demand function is therefore

qi,t(pi,t, pj,t) =
exp(4(2− pi,t))∑n

j=1 exp(4(2− pj,t)) + 1
.
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Table 2: Q-learning: pseudo code

Initialize Qi(s, a)

t = 1, s1 = random

record actions Opti(s)

while t < 109

ati =


argmax

p
Qi(s

t, a) with prob. 1− ε

random with prob. ε = e−βt

st+1 = (at1, . . . , a
t
n)

Qi(s
t, ati) = (1− α)Qi(s

t, ati) + α

[
πt + δmax

a∈A
Qi(s

t+1, ati)

]
if ati == Opti(s

t) for 105 continuous periods

break

else

Opti(s
t) = ati

end if

end while
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The initial Q-matrix is set as the discounted payoff that would accrue to player i if rivals

randomized uniformly:

Qi,0 (s, ai) =

∑
a−i∈An−1 πi (ai, a−i)

(1− δ)|A|n−1
.

We also have different setup for α and β, such that α ∈ {0.05, 0.15, 0.25}, β ∈ {1 ×

10−5, 2× 10−5}. For each pair, we have 1000 sessions.

The action set A is defined uniformly distributed as {p1, . . . , p15}, where p2 = pN and

p14 = pM . In this setup, the Bertrand price is about 1.469, monopoly price is about 1.925.

4.2 Results

4.2.1 Peri Period

We first compare the difference between peri period and pre period, or if firm 2 never adopts

algorithm. We can see from Table (3) that almost all results satisfy Proposition 1. There

are only 6% in the Ceiling rule that we don’t observe a price increase. Among those, half is

such that p0 = p15 which does not satisfy the assumption. The others are when p0 = p14,

because π1(p
14, p14) and π1(p

13, p13) have only 0.3% difference so the algorithm is not always

able to differentiate that.

In the case when the rule is myopic or price undercut, the pre steady states are both

the same with static Bertrand Nash Equilibrium. We observe different peri steady states,

but they are all supracompetitive, which means there are always a price increase. As for

the price trigger strategy, we always see that the peri steady state is the same with static

monopoly equilibrium. Therefore, whatever the pre steady state is, there is always a price

increase.

Rule-based Pre s-s Peri s-s
Price

increase

Myopic (p2, p2) (p8, p5) 100%

Undercut (p2, p2) (p11, p10) 100%

Price trigger (p14, p14) or (p2, p2) (p14, p14) 100%

Ceiling any (p, p) s.t. p < p0 (p0, p0) 94%

Table 3: Steady states in peri period
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4.2.2 Post period

To see the result in post period, we would compare it with peri period. Consider that firm

2 adopts algorithm at t2 periods when firm 1 did at time 0. We try different t2 such that

t2 = {1×105, 2×105, . . . , T} such that T is the time when the algorithm of firm 1 converged.

Any t2 ≥ T should show a very similar result with t2 = T .

To have a clearer view of result, we will use the price grid instead of the absolute price

value.

Figure 1: The converged prices when firm 2 adopts later

In Figure 1, the dashed lines are the benchmark or the steady state in peri period. The

horizontal axis is the time that firm 2 adopts the algorithm, i.e., t2. Each point in the figure

represent the converged price for each firm given t2. We can see that in this case, because

myopic strategy is very competitive, the later firm 2 adopts, the lower price it would set.

In any cases, the price is going to be higher than the benchmark. We would observe a very

similar result when α and β are such that the algorithm learns faster in Figure 2.

For price undercut and price trigger, since the strategy is pretty cooperative, the prices

doesn’t change much when the t2 increases. We also can’t see a price increase compare to

peri period. Detail figures are shown in Appendix 6.2.
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Figure 2: The converged prices when firm 2 adopts later

As for the profits, we first normalize the profit to be

∆ =
π̄ − πN

πM − πN

The results follow the intuition that in the same market, the one with lower price would

earn more. We would observe that in any cases, firm 1 will earn a lower profit compare to

firm 2 in the equilibrium. However, both firms are earning higher payoff compare the static

Bertrand equilibrium, which is the pre steady state.

Do firms benefit from the adoption of algorithm? It depends. In the myopic case, firm 1

always earns profit by adopting an algorithm, but firm 2 doesn’t. We can see from Figure 3

that when firm 2 adopts the algorithm too early, it’s actually not as good as not adopting

algorithm at all (the benchmark). For firms, this is a prisoner’s dilemma. If both firms don’t

adopt algorithms, they will earn a low profit that ∆ = 0. But if they want to earn better

profit, it’s better for them to wait until the rival adopts but they don’t. If we consider the

price of an algorithm, the profit of adopting could be negative.

Since the results follow Proposition 1, we can see that algorithm is always going to rise

prices, not only when firms were in static Bertrand Nash equilibrium. But if both firms are

using algorithms, then in some cases it’s not as high as the Rule-Rule case.
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Figure 3: The converged profits when firm 2 adopts later

4.3 Deviation

To see if algorithms are in an equilibrium or not, we test by forcing a firm to deviate. Figure

4 shows how firms would response if firm 1 is forced to deviate at time 6. We would observe

that firm 2 would punish firm 1 for this deviation. This is the reason why they could end

up with supracompetitive price and an evidence that they are in an equilibrium. Figures of

price undercut and price trigger is in Appendix 6.3.

5 Conclusion

This research sheds light on how the order of pricing algorithm adoption affects tacit collu-

sion. We show by simulation experiments that algorithm does help firms to earn more profit,

but the firm that adopts later would earn more.

We also show that algorithm could learn completely about the rival’s strategy and re-

sponse optimally in the case that the strategy does not change across time. Reinforcement

learning would learn very well in the stationary Markov process where the profit of each

action is constant. We also show by both theory and simulation that there must be a price
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Figure 4: The price pattern when firm 1 deviates after convergence

increase in this case for any previous strategy that satisfy the assumptions. These assump-

tions are testable and also work for most of the cases in empirical work and theoretical

work.

We could also see that not like no communication regulation works in traditional antitrust

policy, no communication of the adoption of pricing algorithm is not going to help to keep

the price low. Further discussion could be how to detect and punish firms that collude with

each other using algorithm.
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6 Appendix

6.1 Optimal Price of Logit demand

Firms are maximizing the per period profit

πi = (pi − ci)qi = (pi − ci) ·
exp(γi−pi

µ
)

exp(γi−pi
µ

) + exp(
γj−pj

µ
) + exp(γ0

µ
)
.
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The optimal price derived by the first order condition is

p∗i = ci +
µ

1− qi
= ci + µ

exp(γi−pi
µ

) + exp(
γj−pj

µ
) + exp(γ0

µ
)

exp(
γj−pj

µ
) + exp(γ0

µ
)

= ci + µ

(
1 +

exp(γi−pi
µ

)

exp(
γj−pj

µ
) + exp(γ0

µ
)

)

We can then get

γi − pi
µ

=
γi − c

µ
+ 1 +

exp(γi−pi
µ

)

exp(
γj−pj

µ
) + exp(γ0

µ
)

exp
(

γi−ci
µ

− 1
)

exp(
γj−pj

µ
) + exp(γ0

µ
)
= exp

 exp
(

γi−pi
µ

)
exp(

γj−pj
µ

) + exp(γ0
µ
)

 ·
exp

(
γi−pi

µ

)
exp(

γj−pj
µ

) + exp(γ0
µ
)

The solution is given by

exp
(

γi−pi
µ

)
exp

(
γj−pj

µ

)
+ exp

(
γ0
µ

) = W

 exp
(

γi−ci
µ

− 1
)

exp
(

γj−pj
µ

)
+ exp

(
γ0
µ

)


where W is the LambertW function. Using the logarithmic property of the LambertW

function ln(W (x)) = ln(x)−W (x), we get

γi − pi
µ

=
γi − ci

µ
− 1−W

 exp
(

γi−ci
µ

− 1
)

exp
(

γj−pj
µ

)
+ exp

(
γ0
µ

)


p∗i = ci + µ+ µW

 exp
(

γi−ci
µ

− 1
)

exp
(

γj−pj
µ

)
+ exp

(
γ0
µ

)


6.2 Simulation Results: Price Undercut and Price Trigger

6.3 Deviation: Price Undercut and Price Trigger
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Figure 5: Price Undercut: Price

Figure 6: Price Undercut: Profit
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Figure 7: Price Trigger: Price

Figure 8: Price Trigger: Profit
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Figure 9: Price Trigger: Deviation

Figure 10: Price Trigger: Deviation
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