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Abstract

This paper examines changes in the gender gap of the wage distribution in China from
1995 to 2018. We use data from the China Household Income Survey (CHIP) 1995-2013
and the China Family Panel Studies (CFPS) 2014 and 2018. To effectively account for
changes in employment composition, we employ nonparametric bounds. We account for
the labor supply’s intensive margin by computing workers’ working hours and hourly
wage using available information in CHIP and CFPS. Our methodology adopts a weak
quartile dominance assumption and a stochastic dominance assumption to tighten the
bounds. The results show statistically significant evidence that, over the years from
1995 to 2018, the median gender wage gap for the young workers (age 25-45) who are
non-college-educated has increased by 0.17 - 0.62 log points. To estimate potential
changes in the evolution of the gender wage gap suggested in the literature, we split
up our analysis into two periods from 1995 - 2007 and 2007 - 2018. The results show
larger changes in the gender wage gap compared to estimates in existing studies. In
the eailer period, we find a significant increase by 0.15 - 0.27 log points in the median
gender wage gap among the young workers who are college-educated. In the second
period, the bounds estimates are less conclusive and suggest a decrease in the median
gender wage gap among the college-educated young workers by 0.05 - 0.19 log points,
but the 95% CI does not exclude a zero change. The estimates of the gender wage gap
at the 75th wage percentile show a similar pattern as the changes at the median wage,
while the statistical implications at the 25th percentile are inconclusive.
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1 Introduction

Reducing the gender wage gap brings multiple benefits to the economy such as promot-

ing economic growth (Schober and Winter-Ebmer, 2011), potentially improving women’s

healthcare access (Fee, 1991) and mental health (Platt and Keyes, 2016), reducing domestic

violence against women (Aizer, 2010), and increasing women’s fertility autonomy (Qian and

Jin, 2018). To reduce the gender wage gap, it is necessary to estimate its level in recent

decades and its trend. Researchers have documented a substantial reduction in the gender

wage gap in the United States during the 1980s and a stable gender wage gap from 1980 to

2010 (Blau and Kahn, 2017).

The story is quite different in China. In recent years, China has experienced a transition

of gender pay gaps. The observed wage earnings gap between males and females has progres-

sively widened since 1988 (Gustafsson and Li, 2000; Gustafsson and Wan, 2020). Gustafsson

and Li (2000) use the Urban Household Income Survey and find that the average gender

wage gap has increased from 15.6% in 1988 to 17.5% in 1995. For a later period, Chi and Li

(2014) find that the average gender earnings gap has increased from 2005 to 2009; estimates

from Heckman’s selection-correction model, which accounts for selection into employment,

suggest an overall underestimated raw observed gender earnings wage gap by 12 - 14%. In

more recent years, Song et al. (2019) used China Household Income Survey (CHIP) and

recorded a temporary narrowing in the gender earnings gap from 29% in 2007 to 25% in

2013.

The existing literature has mostly focused on measuring the average gender earnings gaps

conditional on employment. Instead, this study aims to re-examine changes in the gender

wage differentials at the median, the 25th and the 75th wage quantiles in China from 1995-

2018, while effectively accounting for changes in employment composition and the intensive

margin of labor supply (i.e., hours worked). We use data from the China Household Income

Survey (CHIP) 1995-2013 and the China Family Panel Studies (CFPS), 2014 and 2018.

Controlling for selection into employment is particularly important in estimating the gen-
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der wage gap in China. Since 1988, the labor market structure in China has gone through

dramatic structural changes (e.g., Li et al., 2012; Meng, 2012). Before 1995, China’s un-

employment rate was lower than other countries’ unemployment rate. Since the mid-1990s,

the Chinese government began privatizing small and medium-sized state-owned enterprises

(SOEs), which triggered large-scale layoffs. The unemployment rate jumped to a level even

higher than that of the high-income countries, peaking above 10% in 2002-2003, then slowly

drifting down (Feng et al., 2017). In the same period when the unemployment rate increased,

the overall urban labor participation rate dropped from over 82% to around 75%. The labor

force participation rate has remained low ever since. These changes fell most heavily on the

unskilled women (Feng et al., 2017), which can be potentially due to the increase of the re-

turns to education and the high wage elasticity of women (Hare, 2019). Additionally, in late

2015, the Chinese government relaxed the one-child policy in China and replaced it with the

two-child policy, which may have profound labor market impacts on women. For example,

employers may be concerned that they need to pay for maternity leaves multiple times for

each female employee and may be more reluctant to hire women after the two-child policy

took effect. Importantly, the estimated gender wage gap may be biased due to changes in

labor force participation by gender over the years. For example, some highly educated and

likely high-wage women might be deterred by discrimination in the labor market as a result

of child-bearing. If high-wage women are increasingly exiting the labor market, the observed

gender wage gap may be inflated.

In the literature on gender wage gap estimation, methods employed to control for se-

lection into employment include the Heckman selection-correction model (Blau and Beller,

1988; Mulligan and Rubinstein, 2008; Chi and Li, 2014), semiparametric quantile-copula

(Maasoumi and Wang, 2019), the sample restriction and identification at infinity (Mulli-

gan and Rubinstein, 2008; Machado, 2017), imputation of unobserved wage offers (Blau

and Kahn, 2006; Blau and Comey, 2023), and bounding techniques (Blundell et al., 2007).

Each method has its respective strengths and drawbacks. The Heckman selection-correction
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model yields precise estimates for gender wage gaps; however, the identification relies on

strong assumptions about instrumental variables that affect employment but not wages (i.e.,

the exclusion restriction assumption). The nonparametric quantile-copula approach deals

with selection into employment by computing the reservation wages of the non-working and

allows for time-varying selection. However, it also relies on the exclusion restriction of the

instrumental variables. The identification at infinity does not impose restrictions on the di-

rection of the selection to employment; however, it restricts the sample among a population

group that would “always work”, which may not be representative of the population. The

wage imputation method relies on the assumption that selection into employment is based

on observed variables. Therefore, rich panel data with individuals’ wage histories is usually

needed for the imputation method, and this requirement may not be satisfied in all set-

tings. The nonparametric bounds method we employ does not require exclusion restriction

assumptions, although sometimes it may lead to wide bounds.

To account for differences in labor force participation (employment composition), we

use bounds introduced by Manski (1994), Manski and Pepper (2000), and Blundell et al.

(2007). We start with the worst-case bounds on the wage distribution in Manski (1994)

and then employ additional assumptions substantiated by economic theory to tighten the

bounds. The first assumption we use is the quartile dominance assumption. This assumption

requires that, conditional on age, education, and sex, the quartiles of the wage distribution

(wages at the 25th, 50th, 75th percentiles) of the non-working population not be higher

than the corresponding quartiles of the wage distribution of the working population. We

also employ a stronger version of this assumption – the stochastic dominance assumption,

which requires the wage distribution of the working population to stochastically dominate

the non-working population. These two assumptions are based on a positive selection into

labor force participation, which is implied by standard models of labor supply (e.g., Gronau,

1974; Blundell et al., 2007). To assess those assumptions, we estimate the log residual

wage conditional on age, education, and survey year using CHIP 1995-2013 and CFPS 2014-
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2018. For males and females, respectively, the residual wage distribution of those who are

continuously employed is higher than the residual wage distribution of those who have non-

working spells across all percentiles, except for three incidences – the 90th percentile for

males over 45, and the 90th and the 95th percentiles for females under 45. Aside from the

above exceptions, which occur at very high wage percentiles, the evidence from the residual

wage analysis supports our quartile and stochastic dominance assumptions. 1

After controlling for labor force participation and the hours worked, our bounds estimates

show stronger evidence of an increase in the gender wage gap in the 1995-2007 period. The

increase in the gender wage gap is most statistically significant among the young (under age

45), the college-educated, and at the median and high percentiles of the wage distribution.

Specifically, the bounds estimates suggest a statistically significant increase in the gender

wage gap for the young college-educated at the median wage of at least 0.15 log points, and

at the 75th percentile of at least 0.19 log points. The estimated bounds at the 25th percentile

for young college graduates also suggest an increase in the gender wage gap of at least 0.07

log points, however, this 95% confidence interval (CI) does not exclude a zero change. The

estimates for the 2007-2018 period do not exclude a zero change for most age and education

groups. The bounds at the 75th wage percentile suggest an at least 0.05 log points decrease

in the gender wage gap for the young college-educated, while the 95% confidence intervals

(CIs) do not exclude a zero change.

The main contributions of this paper are in four aspects. First, to the best of our

1We also employ the income of other household members as a monotone instrumental variable (MIV) for the
wage of individuals. Specifically, we assume that for individuals with higher-income family members, their
wage distribution would likely first-order stochastically dominate those with relatively lower-income family
members. A theoretical justification of this assumption rests on the notion of assortative mating (Becker
(1973); Nie and Xing (2019)) and the inter-generational income persistence (Feng et al., 2021; Gong et al.,
2010). We also improve statistical inference on the bounds using MIVs in Blundell et al. (2007). Bounds
that use MIVs involve maximum and minimum operators, for which the standard inference breaks down
(Hirano and Porter, 2012). We adopt a method proposed by Chernozhukov et al. (2013) to bias-correct and
obtain asymptotically valid confidence intervals for these bounds. However, since the survey data structure,
we could not consistently construct the average household member’s income for an individual throughout
the study period. In addition, employing the Chernozhukov et al. (2013) will lead to wider bounds and
confidence intervals for these bounds, which makes the estimated bounds hard to interpret and compare
to the estimated bounds under other assumptions. Therefore, we do not include these results in the main
paper, and all the details and estimations under the MIV assumption are in the Online Appendix B.
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knowledge, we are the first to use bounds as the primary method to control for selection into

employment in estimating the gender wage gap in China. Second, to conduct our analysis,

we harmonize two nationally representative datasets to estimate the gender wage gap from

1995 to 2018. Different from previous literature that used earnings as the measure for the

gender wage gap (e.g.,Chi and Li, 2014; Song et al., 2019), we construct a measure for the

hourly wage. In this way we provide statistical evidence of changes in the gender wage gap

avoiding biases due to labor supply’s intensive (hours worked) and extensive (employed v.s.

unemployed) margins, respectively. Third, we go beyond the median gender wage gap by

analyzing the gender wage gap dynamics in China at the 25th and 75th percentiles of the

wage distribution, thereby providing a fuller picture that includes the lower and upper sides

of the wage distribution.

2 Bounds on the Wage Distribution Accounting for

Employment

Let W be the log wage and X be control variables such as gender, age, education, and

the survey year. Let E indicate whether a person is employed, with E = 1 being employed

and E = 0 otherwise. The probability of being employed given characteristics X = x is

written as P (x). We write the cumulative distribution function (CDF) of W given X = x

by F (w|x), given X = x and E = 1 by F (w|x,E = 1), and given X = x and E = 0 by

F (w|x,E = 0). We have

F (w|x) = F (w|x,E = 1)P (x) + F (w|x,E = 0)[1− P (x)] (1)

In equation (1), data only identifies F (w|x,E = 1) and P (x). F (w|x,E = 0), which is the

wage distribution of the population who did not take up employment, is not observed in the

data. We partially identify the wage distribution of the unemployed, F (w|x,E = 0), using
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comparably weak assumptions.

2.1 The Worst Case Bounds

The worst case bounds following Manski (1994) and Blundell et al. (2007) substitute the

inequality that follows from the definition of a CDF

0 ≤ F (w|x,E = 0) ≤ 1

into equation (1) to bound the log wage cumulative distribution function of the total popu-

lation (F (w|x)) as:

F (w|x,E = 1)P (x) ≤ F (w|x) ≤ F (w|x,E = 1)P (x) + [1− P (x)] (2)

The bounds can then be translated to give the worst case bounds on the conditional quantiles.

Denote the q-th quantile of F (w|x) by wq(x), then

wq(l)(x) ≤ wq(x) ≤ wq(u)(x)

where the log wage wq(l)(x) is the lower bound and the log wage wq(u)(x) is the upper bound

that respectively solve the following two equations with respect to w,

q = F (w|x,E = 1)P (x) + [1− P (x)] (3)

and

q = F (w|x,E = 1)P (x) (4)

Since F (w|x,E = 1)P (x) cannot be smaller than zero, equation (3) cannot be smaller than

[1 − P (x)]; likewise, since F (w|x,E = 1) cannot be greater than 1, equation (4) cannot be

larger than P (x). Due to the lower limit of equation (3) and the upper limit of equation (4),
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using the worst case bounds, we can only identify the lower bounds to log wage quantiles

q ≥ 1−P (x) and upper bounds for quantiles q ≤ P (x) (Blundell et al., 2007). The worst-case

bounds are likely to be wide in practice. Therefore, we impose restrictions on the log wage

distribution to obtain narrower bounds.

2.2 Stochastic Dominance and Quartile Dominance

The standard labor supply model suggests that when the substitution effect of a change

in the wage dominates its income effect, individuals that command higher wages will be

more likely to work, ceteris paribus (Blundell and MaCurdy, 1999). Thus, as in Blundell

et al. (2007), we impose a stochastic dominance assumption between the wage distributions

of the workers and non-workers. That is, we assume that conditional on X = x, the wages

of those observed working first-order stochastically dominate those of the non-workers. This

assumption is based on the notion that workers are more productive than non-workers;

therefore, at each percentile of the distribution, the workers’ observed wages would not be

lower than non-workers’ potential wages. Blundell et al. (2007) show that this positive

selection into employment requires that the difference between the observed wage and the

reservation wage, denoted by w−wR should be positively correlated with w. Intuitively, we

can expect individuals with a higher preference to work to have a low reservation wage wR

and have invested more in human capital in the past, and the accumulated human capital

yields higher wages w and greater differences from wR (Blundell et al., 2007).

This assumption seems plausible in the case of China. In the recent decades of China’s

labor market, the increase in the non-working population has mostly been driven by unskilled

workers (e.g., Feng et al., 2017; Gustafsson and Ding, 2011), which implies that the working

population consists of workers with relatively higher human capital. In addition, Li et al.

(2016) show that the college premiums from 1990-2000 in China have increased. Li et al.

(2017) predict that with investment in physical capital and skill-biased technological change,

the return to human capital in China will continue to increase. If individuals with more
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human capital are more likely to be employed and paid more, this increase in return to human

capital in China continues to make the stochastic dominance assumption more convincing.

Following Blundell et al. (2007), we formulate the stochastic dominance assumption in

our application as

F (w|x,E = 1) ≤ F (w|x,E = 0) ∀w, ∀x (5)

for each w with 0 ≤ F (w|x) ≤ 1 or, equivalently,

Pr(E = 1|W ≤ w, x) ≤ Pr(E = 1|W > w, x).

Under this assumption, the wage distribution of the unemployed F (w|x,E = 0) in the total

wage distribution in equation (1) is lower-bounded by the wage distribution of the employed

F (w|x,E = 1). We can replace F (w|x,E = 0) with F (w|x,E = 1) in the lower bound of

equation (1) and the bounds on the distribution of the wage become

F (w|x,E = 1) ≤ F (w|x) ≤ F (w|x,E = 1)P (x) + [1− P (x)] (6)

Similar to the case of the worst case bounds, the bounds for the conditional wage quantiles

under the stochastic dominance assumptions are w
q(l)
s (x) ≤ wq(x) ≤ w

q(u)
s (x), where w

q(l)
s (x)

and w
q(u)
s (x) respectively solve the following two equations with respect to w,

q = F (w|x,E = 1)P (x) + [1− P (x)] (7)

and

q = F (w|x,E = 1) (8)

The stochastic dominance assumption may not be satisfied in some scenarios. For exam-

8



ple, for individuals in households who have accumulated financial assets and human capital,

a negative correlation between w − wR and w might undermine the stochastic dominance

assumption (Blundell et al., 2007). In light of these scenarios in which positive selection into

employment may not be satisfied, we employ a weaker restriction - a quartile dominance

assumption. This assumption restricts the 25th, 50th, and the 75th wage quantiles for those

not working to be not higher than the corresponding wage quantiles of the observed wage

distribution. This assumption implies the following bounds for the distribution of log wages

of the unemployed, where wq(E=1) denotes the q − th quantile wage of the employed.

0 ≤F (w|x,E = 0) ≤ 1, if w < w25(E=1)(x),

0.25 ≤F (w|x,E = 0) ≤ 1, if w25(E=1)(x) ≤ w < w50(E=1)(x),

0.5 ≤F (w|x,E = 0) ≤ 1, if w50(E=1)(x) ≤ w < w75(E=1)(x),

0.75 ≤F (w|x,E = 0) ≤ 1, if w ≥ w75(E=1)(x),

(9)

Under the quartile dominant assumption, in equation (9), since the three wage quartiles

(i.e., the 25th, 50th, and 75th wage quantiles) of the employed should not be lower than

the respective counterpart wage quartiles of the unemployed, when wage w is higher than

the 25th quantile wage of the employed (w25(E=1)), the wage distribution of the unemployed

F (w|x,E = 0) is lower-bounded by 0.25, and similarly when w is higher than the 50th or

the 75th quartile wages of the employed. Therefore, the bounds for the wage distribution
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are:

F (w|x,E = 1)P (x)

≤ F (w|x)

≤ F (w|x,E = 1)P (x) + (1− P (x)), if w < w25(E=1)(x),

F (w|x,E = 1)P (x) + 0.25(1− P (x))

≤ F (w|x)

≤ F (w|x,E = 1)P (x) + (1− P (x)), if w25(E=1)(x) ≤ w < w50(E=1)(x),

F (w|x,E = 1)P (x) + 0.5(1− P (x))

≤ F (w|x)

≤ F (w|x,E = 1)P (x) + (1− P (x)), if w50(E=1)(x) ≤ w < w75(E=1)(x),

F (w|x,E = 1)P (x) + 0.75(1− P (x))

≤ F (w|x)

≤ F (w|x,E = 1)P (x) + (1− P (x)), if w ≥ w75(E=1)(x)

(10)

In the set of bounds in equation (10), the bounds for w25(E=1)(x) ≤ w < w50(E=1)(x)

is obtained by replacing F (w|x,E = 0) with 0.25 in the lower bound of the total wage

distribution in equation (1). Similarly, the bounds when w50(E=1)(x) ≤ w < w75(E=1)(x) and

w ≥ w75(E=1)(x) are obtained by replacing F (w|x,E = 0) with 0.5 and 0.75 respectively.

The corresponding bounds for the conditional wage quantiles under the quartile dominance

assumptions are w
q(l)
q (x) ≤ wq

q(x) ≤ w
q(u)
q (x), where w

q(l)
q (x) and w

q(u)
q (x) respectively solve

the following two equations (11) and (12) with respect to w,

q = F (w|x,E = 1)P (x) + [1− P (x)] (11)

and
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q = F (w|x,E = 1)P (x), if w < w25(E=1)(x),

q = F (w|x,E = 1)P (x) + 0.25(1− P (x)), if w25(E=1)(x) ≤ w < w50(E=1)(x),

q = F (w|x,E = 1)P (x) + 0.5(1− P (x)), if w50(E=1)(x) ≤ w < w75(E=1)(x),

q = F (w|x,E = 1)P (x) + 0.75(1− P (x)), if w ≥ w75(E=1)(x).

(12)

For our quartile dominance bounds, we assume each log wage quartile of the employed

individuals should be no lower than the respective quartile of the unemployed. The difficulty

in justifying this assumption is that we do not observe the log wage distribution for those

not employed. To find the closest substitute, we use the China Family Panel Studies (CFPS)

panel data to identify individuals who have experienced an unemployment spell before. We

then compare the log wage distribution for individuals who have continuously worked during

the observed periods and the log wage distribution for those who had an unemployment spell.

The rationale is that the observed wage of an individual after an unemployment spell should

be no lower than the reservation wage during the unemployment spell, which in turn should

be no lower than the wage offers available to the individual during the unemployment spell.

Therefore, the difference in wage quantiles between those continuously employed and those

with unemployment spells will be no greater than the unobserved difference in wage quan-

tiles between the employed and the unemployed. If the wage quantiles of workers without

unemployment spells are higher than those of workers with unemployment spells, it should

imply the wage quantiles of the employed are also higher than those of the unemployed.

We find empirical evidence in our data that supports the stochastic and quartile domi-

nance assumptions. In Figure 1, we present the distribution of residual wages by gender, age,

and work history of workers who have been continuously employed and of workers with spells

of unemployment using the CFPS, 2014 and 2018 2. The residual wages are obtained in a

regression controlling for age, age squared, college degree attainment, province of residence,

2See the Data Section for details of the sample
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and survey year dummies. The darker lines indicate the residual wages across percentiles

for workers who do not have spells of unemployment in their work history. The lighter lines

are for the workers with spells of unemployment. The results show that the residual wages

of males and females who do not have unemployment spells are consistently higher than the

wages of males and females who do have unemployment spells from the 5th quantile to the

95th quantile, except for three incidences – the 90th percentile for males over 45, and the

90th and the 95th percentiles for females under 45. The above exceptions occur at very high

wage percentiles, suggesting that the stochastic dominance assumption, which implies that

any wage quantiles of the unemployed should not be higher than the employed, may fail at

very high wage quantiles for young women and older men. In Figure 1, we use boxes to

indicate the 25th, 50th and the 75th wage quantiles. The residual wage quantile estimates

offer support for the weaker quartile dominance assumption in all samples.

2.3 Bounds on the Gender Wage Gap and its Change over Time

Our goal is to conduct inference on the gender wage gap dynamics from 1995-2018 in

China. We use the bounds of males and females’ wage quantiles to estimate the gender wage

gap over the wage distribution and its changes over different points in time. For example,

let the lower bound and the upper bound for males’ wage quantile q with education and

age characteristics x in year t be wq(l)(male, x, t) and wq(u)(male, x, t), and the female’s

equivalent bounds be wq(l)(female, x, t) and wq(u)(female, x, t). The bounds for the gender

wage gap at the quantile q, Dq
t (x) = wq(male, x, t)− wq(female, x, t) are:3

wq(l)(male, x, t)−wq(u)(female, x, t) ≤ Dq
t (x) ≤ wq(u)(male, x, t)−wq(l)(female, x, t). (13)

Similarly, the lower bound of the change in the gender wage gap from year t to year s,

3These bounds can be computed under different combinations of the assumptions presented in Section 2.2
and 2.3.
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∆D
q(l)
st , where s > t, is given by,

{wq(l)(male, x, s)− wq(u)(female, x, s)} − {wq(u)(male, x, t)− wq(l)(female, x, t)}, (14)

and the upper bound, ∆D
q(u)
st , where s > t, is given by,

{wq(u)(male, x, s)− wq(l)(female, x, s)} − {wq(l)(male, x, t)− wq(u)(female, x, t)}. (15)

Our main focus will be the bounds on the quantiles of the wage distribution. To estimate

these, we first estimate the bounds on the distribution of wages. We now describe the

nonparametric estimation procedure we have used. The conditioning vector X includes

gender, education, age, and time. Estimating the worst case bounds and the bounds with

monotonicity requires estimating the employment probability and the distribution of wages

observed amongst the workers for each possible set of characteristics X. We define two

education groups: those who with at most a high school degree (Non-College Group) and

those who with at least a college degree or a Dazhuan (equivalent to a vocational or associate

degree in the U.S.) degree (College Group). We also limit the number of age groups to two:

those below 45 (young) and those above 45 (old). We construct confidence intervals for the

changes in the differentials over time using the bootstrap and applying the results of Imbens

and Manski (2004).

3 Data and Variable Definitions

This study uses both household-level and individual-level data from two surveys. We

use the Chinese Household Income Project (CHIP) for the years of 1995, 2002, 2007, 2013,

and the China Family Panel Study (CFPS) for the years of 2014 and 2018. Using CHIP

and CFPS together enables us to analyze the dynamics of the gender wage gap in China

from the mid-1990s to the late 2010s. This section describes CHIP and CFPS, discusses the
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challenges we encounter while using data from those two surveys together, explains how we

construct our key variables, and introduces our analytic sample.

3.1 CHIP and CFPS

CHIP was carried out as part of a collaborative research project on income and inequality

in China organized by Chinese and international researchers and institutions, including the

Chinese Academy of Social Sciences and the School of Economics and Business Administra-

tion at Beijing Normal University. CHIP is a nationally representative household-level survey

aimed at estimating income, wealth, consumption, and related economic measures in rural

and urban areas in China. CHIP uses a stratified random sampling process to collect data for

three different samples – rural, urban, and migrant groups in 22 provinces, all at household

and individual levels. CHIP samples are cross-sectional and are subsamples taken from the

National Bureau of Statistics (NBS) samples used to obtain the official household statistics

published in the annual Statistical Yearbook of China. CFPS is a nationally representative,

bi-annual longitudinal survey of the Chinese communities, families, and individuals, con-

ducted by the Institution of Social Science Survey of Peking University since 2010. Both

CHIP and CFPS include individual-level demographics and detailed information on wage

income and wealth, making it possible to analyze the national trend of wage inequality.

3.2 CHIP and CFPS Data Harmonization

Although both CHIP and CFPS are nationally representative surveys, their samples are

drawn from different provinces in China.4 Therefore, we need to make sure we use the

correct sampling weights to make those two samples comparable. In the CFPS samples, we

use “the individual-level national sampling weights” provided in the data set. In CHIP, we

use the sample weights based on regional and provincial total population for CHIP samples,

following Li et al. (2017) for CHIP 2007 and 2013. Since Li et al. (2017) only provide the

4Table A.10 in the Appendix lists the covered provinces for each survey by year.
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sampling weight information for the years 2007 and 2013 but not for the earlier years, we do

not apply weights for the CHIP 1995 and 2002.5

To construct the hourly wage variable given yearly earnings, information about each

individual’s working hours is necessary. Since CHIP 1988 does not have information about

hours worked, we are forced to exclude it from our analysis. Additionally, we exclude CFPS

2010, 2012, and 2016 from our analysis due to missing values in key variables. Specifically,

in CFPS 2010 and 2012, we found abnormal employment rates, especially for non-college-

educated females in the raw sample. As a reference, the employment-to-population ratio

was 67.75% in 2010 for individuals aged 15+ according to the World Bank; however, in

CFPS 2010, after applying sampling weights, the employment-to-population ratio is only

55.41% for the same age group, and 63.25% for individuals aged 25 – 55. We also noticed

that, compared to the CHIP sample, the CFPS sample generally has a lower employment

rate. However, compared to CHIP 2007, CHIP 2013, and CFPS 2014, non-college-educated

females in CFPS 2012 experienced an extremely low employment rate. The employment

ratio for non-college-educated females is between 60 - 75% for CHIP 2007, CHIP 2013, and

CFPS 2014; however, the employment ratio is below 60% in CFPS 2012, which we have

not found any reference in explaining. Therefore, we exclude CFPS 2010 and CFPS 2012

from our analysis. In CFPS 2016, an improper operation failed to collect main-job-related

information for individuals who did not experience work changes between CFPS 2014 and

CFPS 2016 (see CFPS Database Clean Report), which makes these data not usable to us as

we would not be able to measure earnings and hours worked accurately for everyone in the

sample. Therefore, we use data from CHIP 1995, 2001, 2007, 2013 together with CFPS 2014

and 2018 to construct our analytic sample. This sample includes Chinese urban residents

aged 25 to 55 with an urban hukou who do not work in the agriculture sector.

5Not applying these sampling weights is also consistent with the previous studies that used CHIP 1995 and
2002 (for example, Xing and Li, 2012; Zhu, 2016; Yang and Gao, 2018), which also makes our results more
comparable to the literature.
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3.3 Key Variables Construction

There are some differences between CHIP and CFPS in the income and employment

variables. Following Kanbur et al. (2021) and Li and Wan (2015) both of whom use CFPS

and CHIP data to analyze the evolution of household income inequality, we break down

different income sources in CHIP (for both individual’s income and household income) and

reconstruct them into the same income definition as in CFPS. Below we discuss how we

construct each key variable.

3.3.1 Hourly Wage

In our analysis, earnings are measured in an accounting period of one year. They include

regular wages, overtime compensation, allowances, and bonuses. This is the same definition

employed in Gustafsson and Wan (2020) and Zhu (2016). We use an individual’s earnings

from the major/primary job as the earnings measure in our analysis. For cases where the

survey does not specify a major/primary job for an individual, we used the earnings from the

job where an individual spent the most time and which had the highest-earning. Earnings

are adjusted to the 2018 prices level using the national urban consumer price index provided

by the National Bureau of Statistics of China.

To construct the hourly wage, information about hours worked is needed. Among all the

surveys, only CHIP 2002 has yearly earnings with working hours per day, working days per

month, and months worked to accurately construct hourly wage. In other surveys, where the

annual working hours are not directly provided, we compute annual working hours by using

either worked hours per week or worked hours per month, whichever is available, assuming

workers work four weeks per month and 52 weeks per year. We then construct the hourly

wage for our primary analysis by dividing the annual primary income by the annual total

working hours, following Hering and Poncet (2010), Kamal et al. (2012), and Lovely et al.

(2019). Constructing hourly wages helps us account for the intensive margin of labor supply.

The left panel of Figure 2 presents the observed log wage gender gap at the median, and
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the right panel presents the observed log hourly wage estimates by gender. From the graph,

we can tell that there is a progressive increase in the gap before 2007, and after 2007 the

direction changes and shows a decreasing trend.

3.4 Sample and Summary Statistics

Our sample includes Chinese urban residents aged 25 to 55 with an urban hukou and not

working in the agriculture sector. We focus on urban households to mitigate the differences

in social benefits between households with urban and rural hukou (Xing and Li, 2012). We

exclude individuals with no household registrations or foreign residents for similar reasons.

An individual is classified as employed (Ei = 1) if he/she is reported to have been employed

during the past year. Since we use the hourly wage in our analysis, we treat self-employed

individuals as employed (Ei = 1) but exclude them from calculating the observed wage

distribution. The observed wage distribution is conditional on the employed individuals

(E = 1) after controlling for the observed individual characteristics x, F (w|x,E = 1). We

control for age and education in the analysis. We divide our sample into two age groups and

two education groups. We define individuals older than 45-years-old as in the old age group

and individuals aged 45 or younger as in the young age group. For those with at most a

high school degree, we define them as non-college degree holders, and for those with either

a Dazhuan degree or at least a college degree as college degree holders.6

Figure 3 shows the changes in employment (including self-employed) against age by

gender. Compared to 1995, the probability of employment for males under age 45 and

females under age 40 increased in 2018. However, there is a dramatic drop in the employment

probability for males around 50 and females around 45. This is correlated with the statutory

retirement age in China – 60 for males and 55 for females in China.

Figure 4 illustrates that the changes in employment have been heavily skill-and-gender-

biased. The employment gap between college-educated and non-college-educated females

6We do not use finer age and education groups because constructing bounds on the wage distribution requires
a large number of observations.
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is larger than their male counterparts’. Moreover, the non-college females’ employment

dropped greatly in 2013. If low-skilled women are exiting employment, we anticipate the

gender wage gap would be larger after considering the employment composition in the 2010s.

4 Results

4.1 Changes in the Median Gender Wage Gap

This section presents the results of estimated bounds on the changes in the median gender

wage gap in China under different assumptions. Importantly, the estimated bounds account

for employment composition. Figure 5 shows the results for changes from 1995 to 2018.7 In

each figure, the space between the two dots represents the bounds of the change in the gender

wage gap between 1995 and 2018. The thin outer lines denote the 95% confidence interval

for the change in the gender wage gap. Panel A presents the estimated results for young

people without a college degree. The worst-case bounds to the change in the gender wage

gap for this group include zero change. To narrow the worst-case bounds, we separately

impose the quartile and stochastic dominance restrictions. With the quartile dominance

restriction alone, the estimated bounds for the young non-college educated group indicate

an increase in the gender wage gap differetials of at least 0.10 log points and by at most

0.65 log points. However, the 95% confidence intervals (CIs) do not exclude a zero change.

Using the stronger stochastic dominance assumption, the bounds are tighter. The bounds

of the young non-college indicate an increase of the gender wage gap of at least 0.17 log

points to at most 0.62 log points, with the 95% CI excluding zero. Panel B shows the

estimated results for young college graduates. Similar to the estimates for their non-college

graduated peers, the worst-case bounds include a zero change. With the imposed quartile

dominance restriction, we find an increase in the gender wage gap by at least 0.03 log points

7Table A.1 in the appendix reports the values for the upper and lower bounds and the corresponding 95%
confidence intervals (CIs) of the bounds in Figure 5.

18



to at most 0.21 log points. Using a stronger stochastic dominance assumption to further

tighten the bounds, we find an increase in the gender wage gap of at least 0.05 log points

to at most 0.20 log points. However, the 95% CIs cannot exclude a zero change under

either of the restrictions. Panel C shows the estimated changes in the gender wage gap for

old non-college graduates. Similar to the estimates for the young groups, the worst-case

bounds include a zero change. Even though under the quartile and stochastic dominance

assumption, the estimated bounds are tighter, none of them exclude a zero change for the

changes in the gender wage gap for old non-college graduates. Panel D shows the estimated

changes for the old college-educated group. Neither of the worst-case bounds nor the bounds

under the quartile dominance assumption exclude zero. With a stronger assumption, we find

an increase in the gender wage gap among college graduates over age 45 for at least 0.12 log

points to at most 0.47 log points. However, the 95 CIs could not exclude a zero change in

the gender wage gap.

Overall, the worst-case bounds to the change in the gender wage gap all include zero

change. In addition, we find that the worst-case bounds are with a large width, especially

for the non-college-educated groups. These larger widths are partially due to the low em-

ployment rates, as shown in Figure 4; there is also a wide difference in the employment

rate between females with and without a college degree. We impose quartile dominance

restriction and stochastic dominant assumption to tighten the bounds. With the quartile

dominance restriction alone, we do not find statistically significant evidence of changes in

the gender wage gap. Under the stochastic dominance assumption, the bounds of the young

non-college indicate an increase of the gender wage gap of at least 0.17 log points to 0.62

log points, with the 95% CI excluding zero. We find that some bounds are wide, especially

for older workers; those wide bounds are mainly due to the low employment of females and

older workers (Figure 4).

To explore any potential changes in the trend of the gender wage gap through the 23

years between 1995 - 2018, we split our study period into 1995 – 2007 and 2007 – 2018. The
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break in 2007 is motivated by the finding in Song et al. (2019) of a temporary narrowing

in the gender wage gap from 2007 to 2013. Figure 6 presents the estimated bounds from

1995 to 2007.8 During 1995 - 2007, we cannot conclude any change in the gender wage

gap among young people without a college education using either the worst-case bound or

under the quartile dominant restriction (Panel A). Using the stronger stochastic dominance

assumption, we find an increase in the gender wage gap of at least 0.04 log points to at

most 0.48 log points. However, the 95% CIs cannot exclude a zero change. At the same

time, it is striking to see that the worst-case bounds for the young college graduates indicate

a 0.07 - 0.32 log points increase in the gender wage gap, and the 95% CIs exclude zero

(Panel B). Since worst-case bounds do not utilize any restrictions on the wage distribution,

we consider this a strong indication of an increase in the gender wage gap for this group.

Under the quartile restriction, the bounds show similar results as the worst-case bounds,

with tighter bounds for the young college graduates showing an increase of the gender wage

gap of 0.13 - 0.28 log points, and the 95% CI excluding zero. The bounds under stochastic

dominance are the narrowest, showing a statistically significant increase in the gender wage

gap of 0.15 - 0.27 log points. The estimated bounds for the old non-college graduates do

not exclude a zero change in the gender wage gap (Panel C), the tightest bounds under the

stochastic dominance assumption showing a potential decrease of at most 0.22 log points

and a potential increase of at most 0.41 log points. The worst-case bounds for older college

graduates indicate an increase of 0.10 - 0.25 log points in the gender wage gap, although

the CI does not exclude a zero change(Panel D). After imposing the restrictions, neither the

95% CIs under the quartile or the stochastic dominance exclude zero changes in the gender

wage gap among college graduates aged above 45, even though the tightest bounds under

the stochastic dominance indicate an increase in the gender wage differential for at least 0.12

log points to 0.19 log points. Overall, we find a statistically significant increase in the gender

wage gap among young college graduates but not other groups from 1995 to 2007.

8Table A.2 in the appendix reports the corresponding estimated values for the upper and lower bounds and
the corresponding 95% CIs.
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Figure 7 presents the bounds of the change in the median gender wage differential from

2007 to 20189. For every group under consideration, the estimated worst-case bounds, the es-

timated bounds under the quartile dominance restriction, and the bounds under the stochas-

tic dominance restriction all include zero.

In summary, at the median of the wage distribution from 1995 to 2018, the estimated

bounds indicate a statistically significant increase in the gender wage gap for the young

workers who are non-college-educated, and this gap has increased by 0.17 - 0.62 log points.

After splitting the analysis into two time periods from 1995 - 2007 and 2007 - 2018, the

estimated bounds indicate a significant increase in the median gender gap among young

college graduates in the earlier period. We do not find any statistically significant change in

the median gender wage gap in the later period for either group under consideration.

4.2 Changes in the 25th Gender Wage Gap

Figure 8 to Figure 10 present the estimated bound on the gender wage gap changes

over time at the 25th quantile of the wage distribution.10 Except for some bounds of the

old college graduates in 1995-2018 and 1995-2007 and young individuals, the estimations

indicate inconclusive changes in the gender wage gap for all the age and education groups

in the two different time periods.

Figure 8 shows the change from 1995 to 2018. From the figure, none of the estimated

bounds excludes a zero change based on the 95% CIs. The narrowest bounds are those under

the stochastic dominance assumption. From panel A, the estimated bounds for the young

non-college graduates indicate an increase in the gender wage gap of 0.04 - 1.23 log points

under the stochastic dominance assumption. The estimated bounds for the young college

graduates (Panel B) suggest an increase in the gender wage gap of 0.04 - 0.36 log points.

The bounds for the older non-college graduates (Panel C) rule out a decrease in the gap

9Table A.3 in the appendix report the corresponding estimated values for the upper and lower bounds and
the corresponding 95% CIs.

10Appendix Tables A4 - A6 present the corresponding values in these figures.
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by more than 0.47 log points and an increase by more than 0.89 log points. The estimated

bounds for the older college-graduates (Panel D) suggest an increase in the gender wage gap

of 0.06 - 0.90 log points.

Figure 9 presents the estimated bounds on the gender wage gap change between 1995

- 2007. The estimated bounds for the non-college groups (Panel A and Panel C) include

zero. For the young college-graduates group(Panel B), the estimated bounds suggest similar

implications as with the gender wage gap at the median wage. From the worst-case bounds

to bounds under different restrictions, the estimated bounds suggest there is a statistically

significant increase in the 25th gender wage gap for this group. Based on the estimated

bounds under the stochastic dominance, the increase is at least 0.07 log points and at most

0.32 log points. Additionally, the estimated bounds under the stochastic dominance indicate

an increase in the gender wage gap of 0.01 - 0.20 log points for the old college graduates

(Panel D); however, the 95% CIs do not exclude zero.

Figure 10 presents the estimated bounds for the change in the gender wage gap between

2007 - 2018. The estimated bounds for all groups are inconclusive for the sign of the gender

wage gap changes. The tightest bounds are under stochastic dominance. The estimated

lower bounds indicate a decrease in the gender wage gap of 0.08 - 0.67 log points, and the

estimated upper bounds indicate an increase in the gender wage gap by 0.25 - 1.19 log points.

In a nutshell, compared to the estimates of the changes in the median gender wage gap,

the results are less conclusive for the gender wage gap over time at the 25th quantile of

the wage distribution. Some evidence suggests an increase in the gender wage gap at the

25th quantile of the wage distribution for the old college-educated group and young groups,

especially for young college graduates.
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4.3 Changes in the 75th Percentile Gender Wage Gap

Figure 11 to Figure 13 present the estimated bounds on the gender wage gap change over

time at the 75th quantile of the wage distribution.11 Figure 11 shows the change from 1995

to 2018. The estimated bounds for the old groups and non-college-educated groups are not

inclusive (Panel A, C, and D). The estimated bounds under the quartile restriction and the

bounds under the stochastic dominance show an increase in the gender wage gap for young

college graduates (Panel B) of 0.04 - 0.18 log points and 0.07 - 0.18 log points, respectively.

However, none of the 95% CIs excludes a zero change. After we split up the study period, the

estimated bounds show a consistent increase in the gender wage gap for college graduates

(Figure 12 Panel B and D). The estimated worst-case bounds suggest a 0.03 to 0.38 log

points increase in the gender wage gap for young college graduates(Panel B). The estimated

bounds under quartile dominance restriction are tighter and suggest a statistically significant

increase in the gender wage gap for young college graduates of 0.17 - 0.30 log points, and

this estimated increase is 0.20 - 0.28 log points after imposing the stochastic dominance

restriction. For the old college graduates (Panel D), without any further restriction, the

estimated worst-case bounds indicate an increase in the gender wage gap of 0.12 to 0.35 log

points, with the 95% CI including a zero change. The estimated bounds under the quartile

and the stochastic dominance restrictions suggest a significant increase in the 75th gender

wage gap for college graduates above age 45 by 0.16 - 0.24 log points and 0.17 - 0.22 log

points, respectively.

Figure 13 presents the estimated results during 2007 - 2018. The estimated bounds under

the quartile and the stochastic dominance restrictions suggest a decrease in the gender wage

gap of 0.02 to 0.22 log points and 0.05 to 0.19 log points for young college graduates (Panel

B), respectively. However, the 95% CIs do not exclude a zero change. The estimated bounds

for the other education and age groups all include zero change and are inconclusive.

In summary, at the 75th quantile of the wage distribution, the estimated bounds indicate

11Appendix Tables A7 - A9 present the values in these figures
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a statistically significant increase in the gender wage gap for workers who are college-educated

in 1995 - 2007. After 2007 to 2018, the estimated bounds indicate a decrease in the gender

gap among young college graduates at the 75th quantile of the wage distribution. Over the

whole period of interest, the estimated bounds show a statistically significant increase in the

gender wage gap for young college graduates. We do not find statistically significant changes

in the gender wage gap for all the other groups.

5 Discussion

Our estimated bounds show a pattern of an increasing gender wage gap among the young

workers (age 25-45) in survey years of 1995-2007 at the median, the 25th and the 75th quantile

of the wage distribution, after accounting for the employment composition. The increase in

the gender wage gap from 1995 to 2007 is between 0.15 - 0.28 log points. This result is in line

with previous findings without fully accounting for employment composition by Gustafsson

and Wan (2020), which show an increase in the gender earnings gap from 1988 - 2007 by

0.14 log points, and findings by Song et al. (2019), who estimates a 0.15 log points increase

in the gender earnings gap from 1995 – 2007. By separating the estimates by different age

and education groups, our results suggest that the gender wage gap increase may be larger

among the young college-educated workers than the other groups.

Specifically, our estimated lower bound estimates show an increase of 0.15 - 0.27 log

points at the median, of 0.07 - 0.32 log points at the 25th quantile and of 0.20 - 0.28 log

points and at the 75th quantile of the wage distribution. These magnitudes are greater

than the estimated gender wage gap increase in Gustafsson and Wan (2020) and Song et al.

(2019), which were based on the population of age 16 - 70 and 16 - 60, respectively, and

which do not account for employment composition.

Our bounds for young college graduates during the period 2007 - 2018 suggest a decrease

of the gender wage gap at the 75th percentile of 0.05 - 0.19 log points, while the 95% CI
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does not exclude zero. This result suggests that the narrowing of the gender wage gap might

be potentially larger in 2007-2018 than what Song et al. (2019) has previously documented,

where they find the gender wage earnings gap narrowed between 2007 - 2013 by 0.04 log points

without accounting for the employment composition. One potential explanation could be the

self-selection of employment for females. Suppose more young high-skilled women choose to

be self-employed or work for fewer hours in recent years. Without controlling for selection to

employment and labor supply, estimates may overstate the gender wage gap and understate

the decrease in the gender wage gap in more recent years. This could potentially explain

a larger decrease in the gender wage gap after 2007, suggested by our bounds estimates

compared to Song et al. (2019).

Our results suggestively show different trends in the evolution of the gender wage gap in

two time periods. Economic factors that contribute to the gender wage gap may explain the

potentially different trends. In the time period of 1995 - 2007, we find results consistent with

an increase in the gender wage gap among young workers both at the median wage and at

the 75th wage quantile. The widened gender wage gap can be explained by the privatization

and marketization in the 1990s’ China (Liu et al., 2000; Maurer-Fazio and Hughes, 2002).

Shu et al. (2007) also show that globalization perpetuates the gender wage differential by

absorbing women in exporting-orientated manufacturing jobs that offer lower wages.

Different from 1995 - 2007, in the later period 2007 - 2018, we do not find evidence of any

increase in the gender wage gap, and some weak evidence of a decrease in the gender wage gap

among the young workers who are college-educated both at the median wage and at the 75th

wage quantile. One potential explanation for this slow-down of the gender wage gap growth

can be higher returns to the schooling of women relative to men and an increase in the return

to schooling in China (Ma and Iwasaki, 2021). Using panel data of the China population

from 2011 - 2015, McGarry and Sun (2018) show that the gender schooling gap in China

has been diminishing from birth cohorts born in the 1950s to those born in the late 1980s.

Suppose women are gaining more years of schooling over birth cohorts while the return to
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schooling is increasing and higher for women than for men. In that case, the schooling factor

may significantly contribute to the closing of the gender wage gap among college-educated

young workers. However, other offsetting factors, such as gender discrimination, may also

exist to slow down the closing of the gender wage gap. These factors include the intra-sector

gender wage differential Ma (2018), as well as the increase in men’s labor market return to

work experience relative to females’( Hare, 2019 and Zhao et al., 2019). Future research can

look into the mechanisms that contribute to those changes in the gender wage gap at different

quantiles of the wage distribution while accounting for the employment composition.

6 Conclusion

This paper estimates China’s distributional gender wage gap dynamics from 1995 to

2018. To control for selection into employment, we employ nonparametric bounds in the

spirit of Manski (1994), Manski and Pepper (2000), and Blundell et al. (2007) under different

assumptions. To tighten the bounds, we use a weak quartile dominance assumption and a

stochastic dominance assumption.

We have found statistically significant evidence that over the years from 1995-2018, the

median gender wage gap for young workers (age 25-45) who are non-college-educated has

increased by 0.17 - 0.62 log points. By splitting the study period, in the survey period

between 1995-2007, we show a significant increase in the median gender wage differentials

from 1995 to 2007 among young workers who are college-educated (an increase of at least

0.15 log points).

Additionally, this paper also estimates the gender wage gap change at the 25th and the

75th percentiles of the wage distribution. At the 25th percentile, all bounds estimates do

not statistically significantly exclude zero change in the gender wage gaps between 1995 -

2007 or 2007 - 2018. At the higher 75th percentile of the wage distribution, in the earlier

years of 1995-2007, we find significant increases in the gender wage gap in 1995-2007 for both

26



the young and older college-educated workers. However, we do not find evidence that the

increase in the gender wage gap has persisted into the 2010s.

Although we do not find that the gender wage gap in China has continued to increase

after 2007, we also do not find strong evidence that the gender wage gap is closing in more

recent years in any education and age groups we considered. In addition, studies such as Song

et al. (2014) and Ma (2018) show majority portion of the gender wage gap is not explained

by social and labor market characteristics. To sustain economic growth and reduce gender

inequality, the Chinese labor market needs more protective legislation for women, such as

reinforcing equal pay for work guidelines, non-discriminatory policies in hiring, and pay data

collection. Future research can look into the mediating factors of the apparent slowdown of

the gender wage gap in recent years and evaluate the impacts of recent policy changes, such

as the two-child policy, on the gender wage gap and women’s labor market outcomes.
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Figure 1: Distribution of Residual Wage by Gender, Age and Work History

Figure 2: Unconditional Gender Wage Gap at the Median and the Median Log Hourly Wage
by Gender
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Figure 3: Age Profile for Employment for 1995 and 2018

Figure 4: Employment by Education for Males and Females from 1995 to 2018
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Figure 5: Changes in Median Gender Wage Gap under Various Assumptions for Different
Groups (1995 - 2018)
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Figure 6: Changes in Median Gender Wage Gap under Various Assumptions for Different
Groups (1995 - 2007)
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Figure 7: Changes in Median Gender Wage Gap under Various Assumptions for Different
Groups (2007 - 2018)
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Figure 8: Changes in Gender Wage Gap under Various Assumptions for Different Groups at
25th Percentile (1995 - 2018)
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Figure 9: Changes in Gender Wage Gap under Various Assumptions for Different Groups at
25th Percentile (1995 - 2007)
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Figure 10: Changes in Gender Wage Gap under Various Assumptions for Different Groups
at 25th Percentile (2007 - 2018)
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Figure 11: Changes in Gender Wage Gap under Various Assumptions for Different Groups
at 75th Percentile (1995 - 2018)
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Figure 12: Changes in Gender Wage Gap under Various Assumptions for Different Groups
at 75th Percentile (1995 - 2007)
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Figure 13: Changes in Gender Wage Gap under Various Assumptions for Different Groups
at 75th Percentile (2007 - 2018)

42



Online Appendix

Appendix A. Tables

Table A.1 : Bounds on Changes in Gender Wage Differential (1995 - 2018)

Worst Case Quartile Restrictions Stochastic Dominance
Young Non-College (-0.1839, 0.7582) (0.0966, 0.6525) (0.1661, 0.6218)

[-0.4410, 0.9636] [-0.0665, 0.8449] [0.0072, 0.8138]
Young-College (-0.0583, 0.2532) (0.0291,0.2138) (0.0535, 0.2029)

[-0.1934, 0.3697] [-0.0943,0.3263] [-0.0683, 0.3154]
Old Non-College (-1.0392, 1.2585) (-0.1525, 1.1007) (-0.0652, 1.0626)

[-1.4006 ,1.5633] [-0.3081, 1.4067] [-0.2080, 1.3711]
Old-College (-0.0731,0.5305) (0.0655, 0.4845) (0.1200, 0.4692)

[-0.3145, 0.8582] [-0.1322, 0.7956] [-0.0791, 0.7792]

Table A.2 : Bounds on Changes in Gender Wage Differential (1995 - 2007)

Worst Case Quartile Restrictions Stochastic Dominance
Young Non-College (-0.2684, 0.6283) (-0.0159, 0.5145) (0.0374, 0.4822)

[-0.3720, 0.7277] [-0.0887, 0.6150] [-0.0345, 0.5840]
Young-College ( 0.0727, 0.3150) (0.1309,0.2821) (0.1525, 0.2740)

[0.0004, 0.3891] [0.0617,0.3536] [0.0837, 0.3445]
Old Non-College (-0.7159, 0.5440) (-0.2982,0.4364) (-0.2237, 0.4062)

[-0.9265 ,0.7223] [-0.4255,0.6110] [-0.3529, 0.5805]
Old-College (0.0961, 0.2484) (0.1104,0.2037) (0.1164, 0.1919)

[-0.0680, 0.4299] [-0.0478,0.3783] [-0.0440, 0.3681]

Table A.3 : Bounds on Changes in Gender Wage Differential (2007 - 2018)

Worst Case Quartile Restrictions Stochastic Dominance
Young Non-College (-0.5779, 0.7923) (-0.2787, 0.5293) (-0.2050, 0.4734)

[-0.8652, 1.0367] [-0.4741, 0.7383] [-0.3974, 0.6780]
Young-College (-0.3249, 0.1322) (-0.2244, 0.0543) (-0.1978, 0.0277)

[-0.4630, 0.2567] [-0.3513, 0.1727] [-0.3234, 0.1459]
Old Non-College (-1.4397, 1.8309) (-0.4932,1.3032) (-0.3910, 1.2060)

[-1.8237, 2.1884] [-0.7108,1.6285] [-0.5981, 1.5356]
Old-College (-0.2722, 0.3851) (-0.1062,0.3422) (-0.0458, 0.3267)

[-0.5574, 0.7369] [-0.3468,0.6784] [-0.2886, 0.6622]
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Table A.4 : Bounds on Changes in Gender Wage Differential at 25th Percentile (1995 - 2018)

Worst Case Quartile Restrictions Stochastic Dominance
Young Non-College (-0.1327, 1.3107) (-0.0268, 1.2722) (0.0406, 1.2321)

[-0.3272, 1.7072] [-0.2100, 1.6693] [-0.1400, 1.6268]
Young-College (-0.0302, 0.3920) ( 0.0113, 0.3788) (0.0419, 0.3640)

[-0.1838, 0.5378] [-0.1415, 0.5228] [-0.1113, 0.5078]
Old Non-College (-0.8702, 1.0143) (-0.6224, 0.9549) (-0.4750, 0.8891)

[-1.1050, 1.1352] [-0.8521, 1.0807] [-0.7052, 1.0122]
Old-College (-0.0677, 0.9448) (-0.0278, 0.9266) (0.0635, 0.8977)

[-0.4119, 1.2891] [-0.3674, 1.2723] [-0.2770, 1.2424]

Table A.5 : Bounds on Changes in Gender Wage Differential at 25th Percentile (1995 - 2007)

Worst Case Quartile Restriction Stochastic Dominance
Young Non-College (-0.3083, 0.8612) (-0.2266, 0.8123) (-0.1577, 0.7747)

[-0.3941, 0.9234] [-0.3115, 0.8738] [-0.2459, 0.8379]
Young-College (0.0275, 0.3475) (0.0527, 0.3349) (0.0733, 0.3226)

[-0.0514, 0.4338] [-0.0255, 0.4202] [-0.0063, 0.4074]
Old Non-College (-0.7554, 0.5009) (-0.6158, 0.4637) (-0.5202, 0.4166)

[-0.9360, 0.5927] [-0.7808, 0.5530] [-0.6872, 0.5056]
Old-College (-0.0094, 0.2532) (-0.0042, 0.2268) (0.0051, 0.2036)

[-0.3311, 0.5586] [-0.3237, 0.5312] [-0.3165, 0.5098]

Table A.6 : Bounds on Changes in Gender Wage Differential at 25th Percentile (2007 - 2018)

Worst Case Quartile Restrictions Stochastic Dominance
Young Non-College (-0.6600, 1.2851) (-0.5504, 1.2101) (-0.4767, 1.1324)

[-0.8613, 1.6839] [-0.7410, 1.6172] [-0.6660, 1.5416]
Young-College (-0.3169, 0.3037) (-0.2719, 0.2745) (-0.2367, 0.2467)

[-0.4765, 0.4591] [-0.4309, 0.4286] [-0.3970, 0.4011]
Old Non-College (-1.1004, 1.4991) (-0.8352, 1.3199) (-0.6717, 1.1894)

[-1.3180, 1.6742] [-1.0434, 1.4771] [-0.8818, 1.3463]
Old-College (-0.2373, 0.8705) (-0.1810, 0.8571) (-0.0759, 0.8284)

[-0.6306, 1.2769] [-0.5661, 1.2619] [-0.4651, 1.2328]
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Table A.7 : Bounds on Changes in Gender Wage Differential at 75th Percentile (1995 - 2018)

Worst Case Quartile Restrictions Stochastic Dominance
Young Non-College (-0.9838, 0.7089) (-0.0345, 0.4471) (-0.0195, 0.4006)

[-1.1875, 0.9431] [-0.3839, 0.6326] [-0.2612, 0.5864]
Young-College (-0.1580, 0.2887) (0.0418, 0.1824) (0.0717, 0.1671)

[-0.3350, 0.4461] [-0.1021, 0.3206] [-0.0722, 0.3064]
Old Non-College (-0.8550, 1.1503) (-0.4380, 0.6905) (-0.0062, 0.6338)

[-0.9853, 1.4019] [-0.7229, 0.8818] [-0.4213, 0.8222]
Old-College (-0.3852, 0.4004) (-0.1610, 0.2774) (-0.1562, 0.2602)

[-0.5926, 0.6754] [-0.4157, 0.4984] [-0.4506, 0.4781]

Table A.8 : Bounds on Changes in Gender Wage Differential at 75th Percentile (1995 - 2007)

Worst Case Quartile Restrictions Stochastic Dominance
Young Non-College (-0.8616, 0.7468) (-0.1496, 0.4436) (-0.1346, 0.3954)

[-0.9371, 0.8578] [-0.2299, 0.5375] [-0.4215, 0.4897]
Young-College (0.0261, 0.3759) (0.1672, 0.2975) (0.1983, 0.2836)

[-0.0771, 0.4717] [0.0836, 0.3812] [0.1150, 0.3668]
Old Non-College (-0.7978, 0.5870) (-0.4069, 0.3063) (-0.3966, 0.2663)

[-0.8887, 0.7512] [-0.5204, 0.4487] [-0.5883, 0.4087]
Old-College (0.1239, 0.3484) (0.1621, 0.2428) (0.1707, 0.2245)

[-0.0931, 0.5886] [0.0052, 0.3986] [0.0108, 0.3828]

Table A.9 : Bounds on Changes in Gender Wage Differential at 75th Percentile (2007 - 2018)

Worst Case Quartile Dominance Stochasrtic Dominance
Young Non-College (-1.3482, 1.1881) (-0.3575, 0.4761) (-0.3343, 0.4547)

[-1.5674, 1.4269] [-0.7370, 0.6772] [-0.5933, 0.7788]
Young-College (-0.4504, 0.1791) (-0.2242, -0.0163) (-0.1923, -0.0508)

[-0.6259, 0.3459] [-0.3656, 0.1215] [-0.3322, 0.0863]
Old Non-College (-1.2313, 1.7375) (-0.6675, 1.0205) (-0.2173, 0.9753)

[-1.4153, 1.9888] [-0.9620, 1.2267] [-0.6526, 1.2343]
Old-College (-0.6596, 0.2026) (-0.3736, 0.0851) (-0.3603, 0.0691)

[-0.9286, 0.5011] [-0.6505, 0.3303] [-0.6693, 0.3116]
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Table A.10: Provinces Covered by Each Survey

Survey Covered Provinces
CHIP 1995 Beijing, Shanxi, Liaoning, Jiangsu,Anhui,

Henan, Hubei, Guangdong, Sichuan, Yunan, Gansu
CHIP 2002 Beijing, Shanxi, Liaoning, Jiangsu,Anhui,

Henan, Hubei, Guangdong, Chongqing, Yunan, Gansu
CHIP 2007 Shanghai,Jiangsu, Zhejiang, Anhui,

Henan, Hubei, Guangdong, Chongqing, Sichuan
CHIP 2013 Beijing, Shanxi, Liaoning, Jiangsu,

Anhui, Henan, Hubei, Hunan, Guangdong,
Chongqing, Sichuan, Yunan, Gansu
Beijing, Tianjin, Hebei, Shanxi,
inner Mongolia, Liaoning, Jilin, Heilongjiang,

CFPS 2014 Shanghai, Jiangsu, Zhejiang, Anhui, Fujian,
CFPS 2018 Jiangxi, Shandong, Henan, Hubei, Hunan, Guangdong,

Guangxin, Hainan, Chongqing, Sichuan,
Guizhou, Yunan, Shaanxi, Gansu, Ningxia, Xinjiang

Appendix B. Bounds Estimation using Monotone IV

(MIV) Assumption

B.1 Monotone Instrumental Variables

Under the exclusion restriction (ER), traditional instrumental variables can help to
tighten the bounds in equation (2) (Manski, 1994; Blundell et al., 2007). The literature
has used instrumental variables (IVs) to tackle the employment selection, such as an in-
dicator of a young child aged less than six years (Chi and Li, 2014), and the number of
young children in the household (Mulligan and Rubinstein, 2008). However, these instru-
mental variables may not satisfy the ER, which requires that the IV can only affect wages
through employment (Angrist et al., 1999). For example, in cases of using the number of
young children as the IV, fertility decisions may affect wage and earnings independently
of employment status. For example, Bratti (2015) shows that postponing fertility raises
women’s wages, in which case the number of children may affect earnings independently of
employment, violating the ER.

Given that it is hard to find a valid traditional IV for employment that is independent
of F (w|x), we instead follow Manski and Pepper (2000) and adopt the following weaker
monotone IV (MIV) assumption, which does not require an exclusion restriction condition-
to tighten the bounds:

F (w|x, z′) ≤ F (w|x, z), ∀w, x, z, z′ with z < z′. (16)

Equation (16) assumes that a higher value of the MIV Z will lead to a distribution of
wages that first-order stochastically dominates the distribution of wages with lower values
of Z. In our application, Z is the average income of the other household members in an
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individual’s household. The rationale of the MIV assumption is predicated on the human
capital assortative mating behavior in China (Han, 2010; Nie and Xing, 2019) and the
documented inter-generational income persistence in China (Feng et al., 2021; Gong et al.,
2010). First, people tend to marry spouses with similar human capital and earning potential
(assortative mating). For people with higher-income spouses, their wage distribution would
likely first-order stochastically dominate those whose spouses have lower income. Second,
inter-generational income persistence may also contribute to the monotone relationship in
equation (16). Specifically, if children with higher-income parents are likely to earn more,
the wage distribution of workers who live with their high-income parents will stochastically
dominate the workers who live with their lower-income parents.

To exploit the MIV restriction, we can find the tightest bounds over the spourt of Z and
ehn integreate out Z. Therefore, under the MIV assumption, for a value of Z = z1, we can
find the highest lower bound (F 1(w|x, z1)) for the distribution of the wage12 over z ≥ z1 in
the support of Z:

F (w|x, z1) ≥ F 1(w|x, z1) ≡ max
z≥z1

{F (w|x, z, E = 1)P (x, z)}. (17)

and the lowest upper bound(F u(w|x, z1)) over z ≤ z1 in the support of Z:

F (w|x, z1) ≤ F u(w|x, z1) ≡ min
z≤z1

{F (w|x, z, E = 1)P (x, z) + 1− P (x, z)}. (18)

Regarding the bounds on the wage quantiles, for a value of Z = z1, we have w
q(l)
miv(x, z1) ≤

wq(x, z1) ≤ w
q(u)
miv (x, z1), where w

q(l)
miv(x, z1) and w

q(u)
miv (x, z1) respectively solve the following

two equations with respect to w,

q = F u(w|x, z1) ≡ min
z≤z1

{F (w|x, z, E = 1)P (x, z) + 1− P (x, z)}, (19)

and
q = F l(w|x, z1) ≡ max

z≥z1
{F (w|x, z, E = 1)P (x, z)}. (20)

The bounds on wq(x) can then be constructed by integrating over the distribution of Z
given X = x, that is,

EZ [w
q(l)
miv|x] ≤ wq(x) ≤ EZ [w

q(u)
miv |x]. (21)

Our approaches to estimating the gender wage differentials are motivated by the fact
that the assumptions needed for point identification are not easy to justify and satisfy in
practice. The worst-case bounds do not rely on any assumptions; therefore, bounds derived
under other weak assumptions are theoretically narrower than the worst-case bounds. The
stochastic dominance and quartile dominance assumption express the notion that workers
are likely to be more productive than nonworkers, and we show evidence of this positive
selection. Since the quartile dominance assumption is a weaker version of the stochastic
dominance assumption, the estimated bounds should be narrower under the stochastic dom-
inance assumption. We also relax the exclusion restriction and use a weaker monotonicity

12Please see Appendix B for computation and inference details.
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assumption that allows for the positive relationship between wages and the instrument,
which is the average of other members’ income in the worker’s household. Theoretically, the
tightest bounds should be under the combination of stochastic assumption and MIV.

Our bounds under the MIV assumption contains maximum or minimum operators (see
equations (17)-(20)). Hirano and Porter (2012) show that for bounds that contain maximum
or minimum operators, standard inference breaks down, which prevent us from using the
confidence intervals in Blundell et al. (2007). To obtain valid confidence regions for the
true wage percentile parameters of interest, we estimate these confidence intervals using
the method proposed by Chernozhukov et al. (2013). In this section we briefly describe
Chernozhukov et al. (2013) as applied to our bounds.

Let the bounds for a parameter θ0 (e.g., the median wage) be given by [θl0, θ
u
0 ], where

θl0 = maxυ∈Vl={1,...,ml} θ
l(υ) and θu0 = minυ∈Vu={1,...,ml} θ

u(υ). Chernozhukov et al. (2013) calls
θl(υ) and θu(υ) bounding functions. We follow Flores and Flores-Lagunes (2013) and let υ
index the bounding functions and ml and mu be, respectively, the number of terms inside
the max and min operators. For example, suppose the wage distribution F (w1|x, z1) has two
lower bound candidates maxz≥z1{F (w1|x, z1, E = 1)P (x, z1), F (w1|x, z2, E = 1)P (x, z2)},
and we can write θl0 = maxυ∈Vl={1,2} θ

l(υ) = max{θl(1), θl(2)}, with θl(1) = F (w1|x, z1, E =
1)P (x, z1) and θl(2) = F (w1|x, z2, E = 1)P (x, z2). The sample analog estimators of the
bounding functions θl(υ) and θu(υ) are consistent and asymptotically normally distributed,
because they are simple functions of proportions.

Chernozhukov et al. (2013) employ precision-corrected estimates of the bounding func-
tions to construct the confidence regions for the bounds [θl0, θ

u
0 ]. Specifically, the precision

adjustment is done by adding to each estimated bounding function (i.e., each bound candi-
dates) the product of its pointwise standard error and an appropriate critical value, κ(p).
With different choices of κ(p), we may obtain the confidence regions for either the true pa-
rameter value or the identified set, and half-median unbiased estimators for the lower and the
upper bounds.13 The bounding function estimates that have higher standard errors receive
larger adjustments. For example, the precision-corrected estimator of the lower bound θl0 is
given by

θ̂l(p) = max
υ∈Vl

[θ̂l(v)− κl
n,V̂ l

n
(p)sl(υ)], (22)

where θ̂l(v) is the sample analog estimator of θl(v) and sl(v) is its standard error. Cher-
nozhukov et al. (2013) compute the critical value κl

n,V̂ l
n
(p) based on simulation methods and

a preliminary estimator V̂ l
n = argmaxυ∈Vl θl(υ), and p is determined by the confidence level

of choice. Intuitively, V̂ l
n selects those bounding functions that are close enough to binding

to affect the asymptotic distribution of the estimator of the lower bound. We obtain the
precision-corrected estimator of the upper bound θu0 in a similar way. Since the critical value
and the standard error in equation (22) are both non-negative, the bias-corrected bounds
tend to be wider than the uncorrected ones. Further details on our specific implementation
steps are provided in Online Appendix B.2.

13The property half-median-unbiasedness means that the lower bound estimator is less than the true value
of the lower bound with probability at least one half asymptotically, while the reverse holds for the upper
bound (Chernozhukov et al., 2013).
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B.2 Other Household Members’ Income

For bounds using the monotone instrumental variable (MIV) assumption, the MIV for
employment in our analysis is the income of other household members. Specifically, we use
the family income minus the person’s total income and average other the size of the household
minus one as the income from other family members in the household. For individuals
without a family, this other member’s income would be zero.

CHIP does not report the total household income; therefore, we use the sum of every
household member’s individual total income as the total household income. In CHIP samples,
an individual’s total income includes the yearly income, the subsidy from minimum living
standard, living hardship subsidies from the work unit, second job, sideline income, and the
monetary value of income in kind.

In CFPS, we are able to calculate the total household income directly, i.e., the sum of
the household total wage income, operating income, transfer income, property income, and
other income. We also construct another measure of total household income by adding up
the total income of all household members. In our analysis, we take the larger amount
among these two income measures as the household total income measure.14 Similarly, we
also use the larger amount between an individual’s total income provided by the survey and
the individual’s income added up from different sources as the individual’s total income in
the analysis. In CFPS, the added-up individual income is the sum of wage income from
all sources, operating income, subsidies, and bonuses. We assign zero to the other family
members’ income for individuals who live alone.

B.3 Inference for Bounds under the MIV assumption

Previously, we have briefly described the method in Chernozhukov et al. (2013) to com-
pute confidence regions for bounds with maximum and minimum operators. In Section B.1,
we explain the computation of bounds under the MIV assumption, and in this Section,
we explain the detailed steps we use to compute the half-median unbiased bounds and the
confidence intervals, following the implementation in Flores and Flores-Lagunes (2013).

The Chernozhukov et al. (2013) method requires us to apply the maximum and the
minimum operators over all the bound candidates inside the lower bound θl(υ) and the
upper bound θu(υ) bounding functions. This requirement cause a computational challenge
for bounds under the monotone instrumental variable (MIV) assumption.

Specifically, under the MIV assumption, the bounds of the wage distribution and the wage
quantiles are first constructed conditional on each quantile of the MIV Z. In our application,
we used 10 MIV quantiles (i.e., the 5th, the 15th, ..., the 95th quantile of income from other
household members). we would need to integrate these lower bounds and the upper bounds
that are conditional on the MIV quantiles over the ten quantiles of the MIV to obtain the
lower bounds and the upper bounds in Equation 18. In this scenario, the total number of

14Theoretically, the added-up total household income from the household survey should be the same as the
added-up total income from all household members from the individual survey. However, when we use the
CFPS sample, those two numbers are not always consistent, and there are cases where we have missing
values in one of the two. Therefore, we use the larger amount among those two measures as the total
household income.
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lower and upper bounds candidates for Equation 18 may respectively surpass 3.5 million,
which cause a computational challenge for us when implementing the Chernozhukov et al.
(2013)

To see this issue in an example, when we compute the half-median unbiased upper bound
for wq(x) in Equation 18, the bounding function of θu(υ) contains the upper bound can-
didates at each of the 10 quantiles of MIV Z. (1) Conditional on the first MIV quan-
tile z = z5th, there will be 10 bound candidates, i.e., wq(x, z = z5th) that is solved from
q = F (w|x, z5th, E = 1)P (x, z5th); w

q(x, z = z15th) that is solved from q = F (w|x, z15th, E =
1)P (x, z15th); wq(x, z = z25th) that is solved from q = F (w|x, z25th, E = 1)P (x, z25th);
wq(x, z = z35th) that is solved from q = F (w|x, z35th, E = 1)P (x, z35th), ..., and wq(x, z =
z95th) that is solved from q = F (w|x, z95th, E = 1)P (x, z95th). (2) Conditional on the sec-
ond MIV quantile, z = z15th, there will be 9 bound candidates, i.e., wq(x, z = z15th) that
is solved from q = F (w|x, z15th, E = 1)P (x, z15th); wq(x, z = z25th) that is solved from
q = F (w|x, z25th, E = 1)P (x, z25th); w

q(x, z = z35th) that is solved from q = F (w|x, z35th, E =
1)P (x, z35th), ..., and wq(x, z = z95th) that is solved from q = F (w|x, z95th, E = 1)P (x, z95th).
Similarly, conditional on 25th quantile of the MIV, z = z25th, there will be 8 bound candi-
dates, and so forth for the bounds conditional on the higher MIV quantiles.

Continuing with our example, after obtaining the upper bounds for each wq(x, z), where
z = z5th, z = z15th, ..., z = z95th, the bounding function of the upper bound in Equation 19,
EZ [w

q(u)miv|x], includes bound candidates that are made of all possible combinations of the
bounds conditional on the 10 MIV quantiles, which are totally 10× 9× 8× 7× 6× 5× 4×
3 × 2 × 1 = 3, 628, 800 bound candidates. The large sizes of the matrices that contain the
bounds candidates and the variance-covariance matrices of the bounds candidates make the
computation time-consuming and not practical for our estimation purpose.

In practice, we first estimate the half-median unbiased MIV bounds and confidence in-
tervals conditional on each of the ten MIV quantiles, with the total number of the bounds
candidates not exceeding 10. We then average out the half-median unbiased MIV bounds
and confidence interval estimates over the ten MIV quantiles.

B.4 Computation Steps of the Confidence Interval

In this section, we follow Flores and Flores-Lagunes (2013) and describe the detailed
steps followed to implement the methodology used by Chernozhukov et al. (2013) to obtain
the confidence interval for the true parameter and the half-median unbiased estimators for
our lower and upper bounds.

As discussed in the paper, the precision adjustment in Chernozhukov et al. (2013) is done
by subtracting or adding to each estimated bounding function (i.e., each bound candidates)
the product of its pointwise standard error and an appropriate critical value, κ(p). κ(p)
is selected based on a standardized Gaussian process Z∗

n(v). For any compact set V ∈ V ,
Chernozhukov et al. (2013) approximate using simulation the p-th quantile of supυ∈VZ

∗
n(v),
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denoted by κn,V (p), and use it in place of κ(p). Since setting V = V l for the lower bound
leads to asymptotically valid but conservative inference, Chernozhukov et al. (2013) propose
a preliminary set estimator V̂ l

n of V l
0 = argmaxυ∈Vlθl(υ) that they refer to an adaptive

inequality selector. This preliminary set estimator V̂ l
n selects those bounding functions that

are close enough to binding to affect the asymptotic distribution of the estimator of the lower
bound. For the same reason, a preliminary set estimator V̂ u

n of V u
0 = argminυ∈Vuθu(v) is

used for the upper bound. The precision-corrected estimator of the lower bound θl0 is

θ̂l(p) = max
υ∈Vl

[θ̂l(v)− κl
n,V̂ l

n
(p)sl(υ)], (23)

where θ̂l(v) is the sample analog estimator of θl(v) and sl(v) is its standard error.

Let γn = [θln(1), ..., θ
l
n(m

l)]′ be the vector of bounding functions and let γ̂n be its sample
analog estimator. The steps we follow to compute the set estimator V̂ l

n and the critical value
κl
n,V̂ l

n
(p) in Equation 1 are as follows.

(1) We obtain by bootstrapping a consistent estimate Ω̂n of the asymptotic variance of√
n(γ̂n − γn). Let ĝn(υ)

′ denote the υth row Ω̂
1/2
n and let sln(υ) = ∥ĝn(υ)∥/

√
n.

(2) We estimate R draws from N (0, Iml), denoted Z1, ..., ZR, where Iml is the ml × ml

identity matrix, and we calculate Z∗
r (υ) = ĝn(v)

′Zr/∥ĝn(v)∥ for r = 1, ..., R.

(3) Let Qp(X) denote the p-th quantile of a random variable X and, following CLR,
let cn = 1 − (.1/ log n). We compute κl

n,Vl(cn) = Qcn(maxυ∈Vl Z∗
r (v), r = 1, ..., R); that

is, for each replication r we calculate the maximum of Z∗
r (1), ..., Z

∗
r (m

l) and take the c-th
quantile of those R values. We then use κl

n,Vl(cn) to compute V̂ l
n = {v ∈ V l : θ̂l(υ) ≥

maxυ̃∈Vl{[θ̂l(ṽ)− κl
n,Vl(cn)

sln(υ̃)]− 2κl
n,Vl(cn)

sln(υ̃)}}.

(4) We compute κl
n,V̂ l

n
(p) = Qp(maxυ∈V̂ l

n
Z∗

r (υ), r = 1, ..., R), so the critical value is based

on V̂ l
n instead of V l.

The precision-corrected estimator of the upper bound θu0 is given by

θ̂u(p) = min
υ∈Vl

[θ̂u(v) + κu
n,V̂ l

n
(p)su(υ)], (24)

where θ̂u(υ) is the sample analog estimator of θu(υ) and su(υ) is its standard error. To
compute κu

n,V̂ l
n
(p) in (2), we follow the same steps above but in step (3) we replace V̂ l

n by

V̂ u
n = {v ∈ Vu : θ̂u(υ) ≥ minυ̃∈Vu [θ̂u(υ̃)+κu

n,Vu(cn)s
u
n(ṽ)]+2κu

n,Vu(cn)s
u
n(v)}. Since the normal

distribution is symmetric, we don’t have to make any changes when computing the quantiles
in step 3 and 4.

Half-median-unbiased estimators of the upper and lower bounds are obtained by setting
p = 1/2 in the steps above and using Equations (1) and (2) to compute, respectively, θ̂l(1/2)
and θ̂u(1/2). To construct confidence intervals for the parameter θ0, it is important to
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take into account the length of the identified set. Following Chernozhukov et al. (2013)
and Flores and Flores-Lagunes (2013), let Γ̂n = θ̂un(1/2) − θ̂ln(1/2), Γ̂

+
n = max(0, Γ̂n), ρn =

max{θ̂un(3/4)− θ̂un(1/4), θ̂
l
n(1/4)− θ̂ln(3/4)}, τn = 1/(ρn log n) and p̂n = 1−Φ(τnΓ̂

+
n )α, where

Φ(.) is the standard normal CDF. Note that p̂n ∈ [1 − α, 1 − α/2], with p̂n approaching
1 − α when Γ̂n grows large relative to sampling error and p̂n = 1 − α/2 when Γ̂n = 0.
An asymptotically valid confidence interval at the confidence level of 1 − α is given by
[θ̂ln(p̂n), θ̂

u
n(p̂n)].

B.5 Results: Changes in the Gender Wage Gap using the MIV
Bounds

Figure B.1 presents the estimated results using the monotone instrumental variable for
changes the median gender wage gap, the changes in the gender wage gap at the 25th, and
the 75th percentile.15 Compared to the bounds under quartile and stochastic dominance
restrictions(Figure 2.5 - 2.7), the MIV bounds are considerably wide for all the age-education
groups in all the considered study periods. For example, the lower bounds indicate 0.10 -
1.42 log points of decrease in the gender wage gap and the upper bounds indicate 0.23 -
1.38 log points of increase in the gender wage gap from 1995 to 2018.16 All MIV bounds
estimates at the median include a zero change except for the young college graduates from
the year 1995 to 2007(Panel B), where the estimated bounds show a statistically significant
increase in the gender wage gap of 0.19 - 0.63 log points. Additionally, for the same group,
the estimated MIV bounds also suggest a decrease in the median gender wage gap of 0.12 to
0.59 log points after 2007; however, the 95% CIs include zero change. The estimated MIV
bounds do not provide any inclusive suggestions about the changes in the gender wage gap
at the 25th wage percentile (Figure B.2). As of the changes in the gender wage gap at the
75th wage percentile, the estimated MIV bounds in Figure B.3 Panel B suggest a statistically
significant increase in the gender wage gap for young college graduates by 0.21 - 0.62 log
points during 1995 - 2007.

15Table B.1 - B.3 reports the values for the upper and lower bounds and the corresponding 95% confidence
intervals (CIs) of the bounds shown in Figure B.1 - B.3, respectively.

16Bounds under the MIV assumption tend to be wider than those under the quartile dominance assumption
and sometimes the worst-case bounds. It may be attributed to the computation procedure explained in
Appendix B.1. In brief, due to a computational constraint, we needed first to compute bounds under the
MIV assumption in each sub-sample conditional on the ten quantiles of the MIV (the 5th, the 15th, ...,
and the 95th quantiles), and then obtain the average of the ten bounds to obtain the bounds for each
education and age group. We are in the process of improving the efficiency in the computation of these
bounds.
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Figure B.1: Changes in Median Gender Wage Gap using the MIV Bounds for Different
Groups
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Figure B.2: Changes in Gender Wage Gap using the MIV Bounds for Different Groups at
25th Percentile
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Figure B.3: Changes in Gender Wage Gap using the MIV Bounds for Different Groups at
75th Percentile

B.1 Changes in Median Gender Wage Gap using the MIV Bounds for Different Groups

1995 - 2018 1995 - 2007 2007 - 2018
Young Non-College (-0.4363, 1.2050) (-0.1410, 0.6568) (-0.7906, 0.9989)

[-0.6382, 1.4219] [-0.3695, 0.8190] [-1.0104, 1.2641]
Young-College (-0.0988, 0.2270) (0.1914, 0.6283) (-0.5864, -0.1206)

[-0.3595, 0.4579] [0.0188, 0.7363] [-0.7991, 0.1534]
Old Non-College (-1.4235, 1.3831) (-0.8779, 0.4525) (-1.5870, 1.9620)

[-1.6875, 1.6209] [-1.0366, 0.6917] [-1.8733, 2.2426]
Old-College (-0.2389, 0.9548) (-0.2255, 0.6236) (-0.4810, 0.6281)

[-0.6021, 1.2656] [-0.4937, 0.8873] [-0.8719, 1.0035]
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B.2 Changes in Gender Wage Gap using the MIV Bounds for Different Groups at 25th
Percentile

1995 - 2018 1995 - 2007 2007 - 2018
Young Non-College (-0.2383, 1.9061) (-0.2834, 0.8105) (-0.6384, 1.3798)

[-0.4464, 2.1788] [-0.4415, 0.9504] [-0.8204, 1.7461]
Young-College (-0.1677, 0.6040) (0.1050, 0.5982) (-0.6773, 0.3430)

[-0.4073, 0.8086] [-0.1058, 0.7543] [-0.8646, 0.5683]
Old Non-College (-1.1090, 0.9674) (-0.7669, 0.3469) (-1.0152, 1.3758)

[-1.3158, 1.1387] [-1.0022, 0.5211] [-1.2153, 1.5565]
Old-College (-0.1508, 1.1682) (-0.2364, 0.6094) (-0.3765, 1.0626)

[-0.4622, 1.6009] [-0.5254, 0.9379] [-0.8031, 1.5044]

B.3 Changes in Gender Wage Gap using the MIV Bounds for Different Groups at 75th
Percentile

1995 - 2018 1995 - 2007 2007 - 2018
Young Non-College (-1.0494, 1.0169) (-0.6036, 0.7791) (-1.3497, 0.9854)

[-1.3701, 1.2590] [-0.8429, 0.9855] [-1.6889, 1.2598]
Young-College (-0.2114, 0.2965) (0.2143, 0.6158) (-0.7191, 0.0276)

[-0.4995, 0.6178] [0.0077, 0.7828] [-0.9513, 0.3127]
Old Non-College (-1.2634, 1.0571) (-0.6384, 1.3798) (-1.4526, 1.9861)

[-1.4339, 1.3512] [-0.8204, 1.7461] [-1.9638, 2.3489]
Old-College (-0.1763, 0.9858) (-0.0020, 0.5429) (-0.5155, 0.6714)

[-0.4697, 1.2311] [-0.3475, 0.8417] [-0.8867, 0.9756]
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