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Abstract

Despite the significant impact of air pollution on public health, its causal effects

on a national scale have not been extensively studied. In this paper, we examine the

impact of PM2.5 on adult health in the United States using data from the Behavioral

Risk Factor Surveillance System for 2001-2012, focusing on a period of relatively low

pollution levels. To address the endogeneity issue, we use the two-stage least-squares

regression with thermal inversion as an instrumental variable. Our findings provide

evidence of the ongoing negative impact of air pollution on overall health. Specifically,

we observe that a 1 µg/m3 rise in PM2.5 is associated with a significant increase in

the number of mentally unwell days by 0.11 and an increase in asthma incidence by

0.16 percentage points. Additionally, our cost-benefit analysis demonstrates that the

marginal benefit of improving PM2.5 standards far exceeds the associated marginal

cost.
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1 Introduction

A considerable amount of research has explored the link between air pollution and

health. One strand of studies has focused on the impact of air pollution on mortality,

with consistent findings showing adverse effects on both children and adults.1 Another

body of literature has examined specific health outcomes, such as low birth weight

or premature birth in newborns and asthma in children.2 However, the majority of

studies have predominately examined the impact of air pollution in specific age groups

such as children and the elderly, leaving limited research on the causal effects of air

pollution on populations in the middle of the age spectrum in the United States. This

paper aims to address the gap in the literature by examining the impact of PM2.5, a

prominent air pollutant, on working-age adults.

PM2.5, also known as fine particulate matter, refers to a mixture of solid particles

and liquid droplets found in the air with a diameter smaller than 2.5 micrometers.3

To investigate the impact of PM2.5 on health, we use data from the Behavioral Risk

Factor Surveillance System (BRFSS) for 2001 to 2012, which provides comprehensive

information on respondents’ health status across all US states. The BRFSS dataset

offers several advantages over other datasets. Firstly, it records both health outcomes

and health behaviors for each respondent, allowing us to analyze individual responses

to air pollutants. Secondly, the publicly available geographic information in the BRFSS

dataset enables us to fully exploit the within-county variation in PM2.5. Finally, the

inclusion of interview dates in the BRFSS data makes it possible to study the short-run

impact (days or weeks) of air pollution.

One challenge in our study is the endogeneity of air pollutants, which could bias our

estimates. To address this, we use the instrumental variable approach, which requires

an exogenous variable that is relevant to PM2.5 but impacts people’s health status

only through PM2.5. Previous literature has verified two categories of instrumental

variables. The first category pertains to exogenous shocks stemming from human

activities, such as the environmental regulation stringency (Li and Li, 2022), refinery

1Related literature includes Dockery et al. (1993), Samet et al. (2000), Chay and Greenstone (2003),
Peng et al. (2005), Currie and Neidell (2005), Jerrett et al. (2005), Wong et al. (2008), Janke et al.
(2009), Jerrett et al. (2013), Di et al. (2017b), Di et al. (2017a), Anderson (2020), Wei et al. (2020),
He et al. (2020), and Barreca et al. (2021).

2Related literature includes Wang et al. (1997), Bobak (2000), Neidell (2004), Bell et al. (2007),
Jerrett et al. (2008), Currie et al. (2009), Pénard-Morand et al. (2010), Currie and Walker (2011),
Nishimura et al. (2013), Guarnieri and Balmes (2014), Laurent et al. (2016), Jans et al. (2018), Arroyo
et al. (2019), Tiotiu et al. (2020), Simeonova et al. (2021), Colmer et al. (2021), and Shin et al. (2021).

3Apart from natural factors such as wildfire smoke, forest, and dust storms, human activities are
a major source of PM2.5, including burning fossil fuels, construction sites, road dust, and exhaust
gases from power plants. Such inhalable matter can directly undermine one’s health by infiltrating the
lungs and bloodstream, and long-term exposure to PM2.5 causes respiratory diseases, heart attacks,
and even cancer.
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closures (Hanna and Oliva, 2015), the presence of a Democratic governor in US states

(Beland and Boucher, 2015), nonattainment status of air quality standards (Chay

and Greenstone, 2005), traffic congestion (Currie and Walker, 2011; Simeonova et al.,

2021), and the Clean Air Act of 1970 (Isen et al., 2017). The second category involves

meteorological phenomena that occur naturally and have been shown to be independent

of economic activities. This category includes thermal inversions (Arceo et al., 2016;

Jans et al., 2018; Deschenes et al., 2020; Chen and Zhang, 2021; Chen et al., 2022;

Colmer et al., 2021), wind direction (Deryugina et al., 2019), air stagnation (Kerr

and Waugh, 2018), and ventilation coefficients (Hering and Poncet, 2014; Zhang et al.,

2020). In our study, we utilize thermal inversion as an instrumental variable to estimate

PM2.5 levels. To the best of our knowledge, this is the first study to employ thermal

inversion as an instrumental variable in the US context on a national scale.4 We present

robust first-stage results and provide additional evidence to support the validity of our

instrumental variable approach.

Our study reveals that PM2.5 has immediate adverse effects on both physical and

mental health. Specifically, we find that a 1 µg/m3 increase in PM2.5 is associated

with a 0.16 percentage point increase in the odds of developing asthma and a 0.11-day

increase in mentally unwell days, but we do not observe any other health issues such as

poor self-reported health status, days of feeling physically unwell, and obesity at low

levels of PM2.5 exposure. Moreover, we construct a health index to assess the overall

health status of individuals, and the results suggest that exposure to PM2.5 leads to a

deterioration in general health. Our study identifies that the adverse health effects of

PM2.5 are more pronounced in certain socioeconomic groups, such as the unemployed,

non-Whites, individuals with low socioeconomic status, and individuals aged 45-64.

This paper makes several contributions to the study of adverse health effects of air

pollution. Firstly, it contributes to the causal impact of air pollution on the health of

the adult population in the United States. Unlike prior literature, which has mostly

focused on either children or the elderly, our study examines the adverse health effects

for adults aged 25–64, enabling us to fill the gap in the literature on the overall health

of the working-age population. Several exceptions also study this middle-aged group,

but our paper differs in terms of the outcome variables. For example, Graff Zivin et al.

(2023) found the joint impacts of air pollution and vaccine protection on influenza

hospitalizations. Persico and Johnson (2021) and Austin et al. (2023) used different

exogenous variations in air pollution to explore its adverse effects on COVID-19 cases

and deaths. Our work provides complementary results by focusing on another set of

4Thermal inversion has been employed as an IV in various contexts, including mainland China
(Deschenes et al., 2020; Chen and Zhang, 2021; Chen et al., 2022), Hong Kong (Colmer et al., 2021),
Mexico city (Arceo et al., 2016), and Sweden (Jans et al., 2018).
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adult health outcomes such as mental health and asthma.

Secondly, our study utilizes sampling weights and comprises a nationally repre-

sentative sample of individuals from 730 counties in the United States, making our

results more generalizable than previous literature. Many prior studies have limited

their analysis to specific regions or states, which may hinder the generalizability of

their results. The most relevant paper to our study is that of Deryugina et al. (2019),

who conducted an instrumental variable estimation based on data from 902 counties

in the United States and found a positive association between PM2.5 and mortality

and healthcare use for the elderly at the county–day level. By comparison, our paper

investigates the causal impact of PM2.5 on physical and mental health outcomes at

the individual–day level, which enables us to exploit more variation at a more granular

level and examine the potential heterogeneous effects. Additionally, we use thermal

inversion as an exogenous variation to identify the causal effects of air pollution on

health. Our first-stage results suggest that thermal inversion can significantly predict

the level of PM2.5 in the United States.

Thirdly, our findings indicate a direct impact of PM2.5 on health without signifi-

cant short-term changes in individuals’ health-related behaviors in response to poorer

air quality (Deschenes et al., 2020; Liao et al., 2021; Jones, 2023). Prior research

suggests that direct damage to the body may explain the observed relationship be-

tween PM2.5 and health outcomes. For example, PM2.5 is associated with disorders

of neurotransmitters and deposition of toxic elements, which can cause depressive-like

responses (Chu et al., 2019). Additionally, air pollutants can cause oxidative damage

to the airways, leading to inflammation, remodeling, and increased risk of sensitization

(Guarnieri and Balmes, 2014). Our findings are supported by data from the BRFSS

and the American Time Use Survey, through which we find no significant impact of

PM2.5 on exercise, smoking, drinking, sleep, or leisure time. These results indicate

that the effect of PM2.5 on health outcomes is not primarily mediated by changes in

health behaviors in response to PM2.5 exposure.

Finally, we conduct a cost–benefit analysis that simultaneously estimates the

marginal costs and marginal benefits of air pollution control. Our results demon-

strate that the benefit of further reducing PM2.5 by 1 µg/m3 exceeds its cost, even at

relatively low pollution levels. Specifically, we estimate the household’s average will-

ingness to pay for a marginal reduction in PM2.5 given constant health outcomes and

extrapolate the cost of such reduction based on estimates in an EPA report. Our anal-

ysis suggests that the marginal benefit ranges from $360.15 billion to $492.3 billion,

while the marginal cost is between $75 million and $229 million. This contends with

the extant safe PM2.5 values set by the EPA and provides strong support for a more

stringent PM2.5 standard in the future.
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The remainder of this paper is organized as follows: Section 2 introduces the

major variables and the primary sample. Section 3 shows the empirical model and

the validity of the instrument. Section 4 reports our main results, robustness checks,

and heterogeneous effects. Section 5 evaluates alternative explanations for the adverse

effect of PM2.5 on health outcomes. Section 6 discusses the cost–benefit of future

pollution abatement. Section 7 draws the final conclusions.

2 Data and Sample

2.1 Health Outcomes and Behaviors

To examine the effects of PM2.5 on health outcomes, we utilize data from the

Behavioral Risk Factor Surveillance System (BRFSS) for the period of 2001 to 2012.5

BRFSS, administered and supported by the CDC’s Population Health Surveillance

Branch, is a national system of telephone surveys designed to gather information on

health-related risk behaviors, chronic health conditions, access to health care, and use

of preventive services from the non-institutionalized adult population residing in the

United States.

The BRFSS dataset offers two significant advantages over other datasets. First, it

provides county and interview date information for respondents. Nearly 97% of com-

pleted surveys have a Federal Information Processing System (FIPS) county code, and

almost all of them indicate the interview date. This allows us to measure the pollution

level that occurred close to the date of their health-related responses. Second, BRFSS

has recorded comprehensive health information for over 200,000 adults, encompassing

data from 50 states and the District of Columbia. The complete geographic coverage of

the BRFSS enhances the representativeness of our final results compared to previous

studies.

We extract a set of variables from BRFSS, including individual physical and mental

health. Firstly, respondents are asked to evaluate their health status on a five-point

scale from ”poor” to ”excellent”. We construct a dummy variable that equals 1 if

the answer is ”poor” or ”fair” and 0 otherwise. Respondents are also asked about

the number of days in the past 30 days when their physical and mental health were

not good. Based on this information, we create extensive margin variables, which are

dummy variables equal to 1 if the answer is a positive number between 1 and 30,

and intensive margin variables, which are continuous variables representing the exact

number of days the respondents reported having poor physical or mental health. We

5We restrict the sample to the period of 2001-2012 because county codes in BRFSS are publicly
available until 2012, and PM2.5 observations have been more complete since 2001.
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construct additional extensive and intensive margin variables based on the number of

days that poor physical or mental health kept respondents from their usual activities,

such as self-care, work, or recreation. In addition, we generate an indicator for current

asthma status, which equals one if the respondent has ever been diagnosed with asthma

and still suffers from the condition. Our health outcomes also include body mass index

(BMI), overweightness (BMI≥25 kg/m2), and obesity (BMI≥30 kg/m2). To measure

the overall health status of each person, we calculate a health index by taking the

arithmetic mean of z-scores for various health-related variables,6 including the number

of days the respondents felt physically or mentally unwell, self-rated health status,

activity limitation days, asthma, BMI, and history of diabetes.7

2.2 Air Pollution and Weather

We utilize the EPA’s daily PM2.5 concentration data, which provides the detected

contaminant levels and the location of each monitoring station. In counties with mul-

tiple monitoring stations, we calculate the pollution level by averaging the readings

on a daily basis. The data covers 901 counties in the United States. Unlike previous

literature that fills in missing values by using weighted averages of readings from mon-

itoring stations within 20 miles of the county centroid (Currie and Neidell, 2005; Janke

et al., 2009), our sample only comprises counties with monitoring stations to avoid

measurement errors. We define our primary exposure variable as the maximum PM2.5

level over the past week because we aim to identify short-term effects (days or weeks)

and because extreme levels of pollutants have deterministic effects on individual health

compared to average levels of pollutants.8

Since weather conditions may confound our estimates, we obtain daily weather

data for each county from PRISM Spatial Climate Datasets, including precipitation,

daily maximum temperature, and daily minimum temperature.9 These variables are

6The construction of our health index is very similar to the summary index from Anderson (2008).
The only difference is that the summary index assigns lower weights to highly correlated outcome
variables, while ours assigns equal weights to each outcome. Thus, the effect on the health index is,
in a sense, a statistical test of whether a program has a ”general effect” on a set of outcomes. We will
show the p-value from the summary index in Section 4.

7A higher health index value indicates poorer overall health. Zero is included when computing the
health index using these days. To provide a more comprehensive reflection of an individual’s general
health status, we include the history of diabetes as one component of the health index. This variable is
associated with comorbidities such as hypertension, heart disease, sleep disorders, and other diseases
not specifically mentioned in the BRFSS (Jehan et al., 2018). Excluding diabetes from the health
index does not qualitatively affect our main results. However, it is not one of the main outcome
variables as we do not know the timing of having diabetes.

8For example, Pignon et al. (2022) found that there is an increase in the daily number of emergency
visits for psychotic disorders during peak periods of PM2.5 concentration.

9The weather data were collected from PRISM (Parameter elevation Regression on Independent
Slopes Model) datasets: https://prism.oregonstate.edu/.
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also averaged over the past 7 days and serve as covariates in our main results.

Our PM2.5 and weather variables are all defined based on the values over the past

7 days, which may seem inconsistent with the temporal duration of some outcome

variables. Survey questions in BRFSS regarding physical health, mental health, and

activity limitation ask about an individual’s experiences over the past 30 days. How-

ever, potential recall errors among survey respondents may make their responses more

reflective of recent experiences (De Nicola and Giné, 2014; Kjellsson et al., 2014), thus

making more recent air pollution levels a more sensible predictor.

To investigate potential recall errors, we estimate Eq. (1) using the IV approach,

which will be discussed in detail in Section 3. We examine physical health, mental

health, and activity limitation outcomes by incorporating PM2.5 measures and the

number of thermal inversions over different durations: 7, 14, 21, 28, and 30 days.

As shown in Figure A.2, confidence intervals widen as the duration of measurement

increases, indicating the presence of recall errors. Furthermore, the F-statistics of

the first-stage equation, represented by the cross marks, drop below 10 for several

outcomes when the measurement duration exceeds 14 days. Therefore, our choice of

7-day pollution measures is reasonable and practical.

2.3 Thermal Inversion

Thermal inversion is a meteorological phenomenon that occurs when there is a

reversal of temperature in the troposphere, which can cause air pollutants to become

trapped within a region, leading to worsening air quality. This phenomenon is caused

by various factors, such as radiation during a clear night, warm air subsidence, or

horizontal collision of hot and cold air (Arceo et al., 2016). It is independent of economic

factors and depends solely on weather and geography. Therefore the thermal inversion

is relatively exogenous after controlling for weather conditions and the fixed effects of

time and county. Using atmospheric temperature data from MERRA-2,10 the thermal

inversion variable is created by first using four-dimensional temperature data at the

grid level on a 6-hour basis with 42 layers of air above the ground. We define thermal

inversion as occurring if the temperature of the first layer (approximately 110 meters

above the ground) is lower than that of the second layer (approximately 320 meters

above the ground), and then aggregate the data to the daily level. Next, we convert

the thermal inversion count from the grid level to the county level by averaging the

daily number of thermal inversions for all grid points within 100 kilometers from the

centroid of each county using inverse distance weighting. Finally, we compute the total

10The atmospheric temperature data were sourced from MERRA-2: https://disc.gsfc.nasa.

gov/datasets/M2I6NPANA_5.12.4/summary.
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number of thermal inversions that occurred during the past week to obtain the IV.

This IV is expected to be positively related to PM2.5.

Figure 1 displays the average PM2.5 concentration, using the daily maximum value

of PM2.5 and the number of thermal inversions from 2001 to 2012. We observe a

roughly parallel time trend for these two variables with a correlation coefficient of 0.70,

indicating that thermal inversion can be a predictor for PM2.5 concentration. Figure

A.1 shows the maps for PM2.5 and thermal inversion in 2001 and 2012, and we observe

a large cross-sectional variation in PM2.5 and thermal inversion, which supports our

empirical identification.

2.4 Sample Selection and Summary Statistics

We focus our analysis on the working-age population, including individuals who

are aged 25 to 64, from the BRFSS survey conducted between 2001 and 2012, which

accounts for 67.6% of the entire sample. To ensure accuracy in our estimates, we

further exclude students and retirees (N = 124,281), whose exposure to air pollutants

may not be accurately measured as they may spend limited time in their county of

residency, and exclude unable-to-work individuals (N = 105,343), who are more likely

to have very poor health and confound the effect of air pollution on health outcomes.

This leaves 1,161,110 observations in our primary sample.

A limitation of BRFSS is the lack of information about the geographic location

of the respondent’s workplace, which can result in measurement errors for exposure

to air pollutants. However, data from the American Community Survey (ACS) can

minimize this concern as it indicates that approximately 27% of workers aged 16 and

above worked outside of their county of residence in 2012. By merging the PM2.5 data

with individual-level ACS data for 2005-2012, we found that the difference in PM2.5

exposure between the county of residence and the working county accounts for 0.4%

relative to the sample mean of the working county.11 This suggests that bias due to

measurement errors for exposure to air pollutants should be limited.

Table 1 presents summary statistics for major variables used in the analysis. About

10.7% of adults report fair or poor health, while 32.5%, 35.7%, and 37.3% of adults

experience at least one day with physical issues, mental issues, and activity limitations,

respectively. Additionally, 7.2% of the adults suffer from asthma at present, and there

is a high prevalence of overweightness (63.1%) and obesity (24.9%).

The average PM2.5 level during the sample period is approximately 17.4 µg/m3,

which is slightly higher than the annual standard of 15 µg/m3 during 1997–2011 and

11The county information has been available since 2005, and the publicly-available ACS data con-
tains 475 unique counties during the sample period.
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12 µg/m3 since 2012, but significantly lower than the 24-hour standard of 65 µg/m3

during 1997–2005 and 35 µg/m3 since 2006. The sample mean of thermal inversion is

0.319, indicating that this meteorological phenomenon happens approximately 0.319

times per week on average. Our model also includes control variables for demographic

characteristics, such as gender, race, and education, as well as weather variables. The

relevant summary statistics for these variables are presented in Table A1.

3 Empirical Strategy

Our objective is to investigate whether an individual’s health is still at risk from air

pollution, despite the decline in PM2.5 concentration levels over time. The econometric

model is presented as Eq. (1) below:

Hict = β0 + β1Pct +Xictγ +Wctζ + ϕc + λt + εict (1)

where Hict represents the adverse health outcome for individual i residing in county

c at time t. Pct is the maximum value of PM2.5 in the past week. Xict is a vector

consisting of demographics, including gender, dummy variables for age cohorts, race,

educational attainment, employment status, income categories, and a dummy variable

for any health insurance coverage. Wct contains weather variables including the average

precipitation and the average daily maximum and minimum temperatures for the past

week. The model includes county fixed effects, ϕc, to control for time-invariant and

county-specific unobservables such as population density and the industrial structure.

The model also includes year, month, and weekend fixed effects, represented by λt, to

capture the effects of county-invariant and time-specific factors, such as the seasonality

of air pollution concentration. All standard errors are clustered at the county level to

account for the correlation of unobservables within each county, and sampling weights

from BRFSS are applied to all regressions.

We will begin by estimating Eq. (1) using ordinary least squares (OLS). The coeffi-

cient of interest is β1, which is expected to be positive and interpreted as the detrimental

effect of PM2.5 on health. However, the potential endogeneity of air pollutants may

lead to bias in the OLS estimator β̂1. The first source of bias arises from measurement

error. While PM2.5 data collected from monitoring stations are sufficiently accurate,

some studies suggest that monitoring stations may be located in rural areas with bet-

ter air quality, leading to an underestimation of exposure to PM2.5 and attenuation

bias in the OLS estimators (Grainger and Schreiber, 2019; Mu et al., 2021). Another

potential source of bias is omitted variable bias. For example, traffic flow, which is a

significant source of particulate matter, may proxy for life burden or mental stress in
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a county and negatively affect residents’ health status.

To address the potential endogeneity problem, we adopt the instrumental variable

(IV) approach. This approach involves two stages: in the first stage, we use thermal

inversion to predict the PM2.5 concentration at the county–time level; in the second

stage, we replace the actual PM2.5 with the predicted PM2.5 in Eq. (1) to obtain

unbiased estimates. The IV approach identifies the portion of PM2.5 that is exoge-

nous and uncorrelated with omitted variables, so that the estimated coefficient β1 is

not biased. As we discussed in Section 2.3, thermal inversion is a good predictor of

particulate matter concentration since it inhibits the diffusion of particulate matter.

The first-stage equation is as follows:

Pct = α0 + α1Tct +Xictδ +Wctη + ϕc + λt + ξict (2)

here, Tct represents the total number of thermal inversions in the past week in county

c at time t. Pct is the PM2.5 concentration. The remaining variables are the same as

those in Eq. (1).

To ensure the validity of our instrument, we need to satisfy both inclusion and

exclusion restrictions. For thermal inversion, the inclusion restriction can be tested

using Eq. (2). Table A2 presents the first-stage results for various specifications,

which show that the coefficients of thermal inversion are significantly different from 0

and feature F-statistics that are greater than 10. This indicates a strong correlation

between PM2.5 and thermal inversion. However, we cannot directly verify the exclusion

restriction. Previous studies have shown that thermal inversion is a valid instrument

because it is unrelated to the local economy (Deschenes et al., 2020; Chen et al., 2022)

or other confounders linked to health. Furthermore, we have some circumstantial

evidence to support the exogeneity of our IV. As shown in Table A3, no effects of

thermal inversion are observed on health-related behaviors that are closely linked to

individual health status. If the exclusion restriction were invalid, thermal inversion

could indirectly affect health at least through these behaviors, once people are aware

that thermal inversions prevent particle diffusion. Our results partially validate this

restriction by showing no effects on some behaviors, but it is impossible to exclude all

potential channels between thermal inversion and health.

Despite the exogenous nature of thermal inversion, it may lead to a compositional

change in our sample and pose a threat to the research design. To address this concern,

we conduct a balance test by regressing major demographics separately on thermal

inversion. Table A4 reports the balance test results with one of the demographics being

the outcome each time. We do not find any statistically significant impact of thermal

inversions on these demographics (p-value<0.05). Therefore, the estimated impact of
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PM2.5 on health is not driven by the composition imbalance of our sample. Overall, the

balance test results suggest that the thermal inversion is sufficiently random, supporting

the validity of the exclusion restriction.

Another concern relates to sample attrition due to mortality. Deryugina et al.

(2019) found that a 1 µg/m3 increase in daily PM2.5 causes 0.69 additional deaths per

million of the elderly. As individuals with severe symptoms may die indirectly from

PM2.5 and are not counted in our sample, our estimates may substantially deviate

from the actual effects. However, given the coefficient in Deryugina et al. (2019), the

estimated sample attrition due to mortality is not large enough to materially drive our

estimates.12

4 Results

4.1 Main Results

Table 2 presents the impact of PM2.5 on physical, mental, and overall health status

using both OLS and IV approaches. In Section 3, we have highlighted the potential bias

of OLS estimates arising from measurement error or omitted variable bias. Comparing

the OLS results with the corresponding IV estimates gives us the insight that the OLS

coefficients are biased downward towards zero for most health outcomes. Henceforth,

we primarily focus on the IV estimates.

The IV estimates show that PM2.5 has significant impacts on mental health,

asthma, and overall health status measured by the health index. Specifically, we find

that PM2.5 has no effect on the extensive margin of mentally unwell days (row 4)

but has a significant and positive impact on its intensive margin (row 5). Not finding

effects on the extensive margin simplifies our analysis since we do not need to consider

the participation of new risky groups in marginal effects. The IV estimate in row (5)

indicates that every 1 µg/m3 increase in PM2.5 leads to an average increase of 0.11

days that respondents feel mentally unwell (or approximately 1.2% increase relative

to the sample mean) for individuals who already have depression or stress symptoms.

We further investigate whether the adverse mental effect of PM2.5 remains constant

across the spectrum of mental illness. To do this, we replace the number of mentally

unwell days with indicators for whether the respondent felt mentally unwell for more

12Based on estimates from Deryugina et al. (2019), we assume that the association between PM2.5
and mortality also holds for younger cohorts and calculate the loss in the number of observations
due to mortality in our sample, which equals 0.80 (= (0.69× 1, 161, 110)/(1, 000, 000− 0.69))), where
1,161,110 is the sample size of our work. This gives us a loss in observations of approximately 0.80.
Losing around 0.80 observations does not substantially affect our estimates, considering the large
sample size of 1,161,110.
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than 5 days, 10 days, 15 days, 20 days, or 25 days. Our IV results in Table A5 show

that PM2.5 significantly increases the probabilities of feeling mentally unwell for more

than 15 days and 20 days. These results imply that the adverse marginal effects of

PM2.5 are concentrated in individuals with moderately severe symptoms (≥ 15 days

or ≥ 20 days) rather than in individuals with mild (≥ 5 days or ≥ 10 days) or severe

symptoms (≥ 25 days).

In row (8) of Table 2, we find a significant association between PM2.5 and asthma.

The estimate suggests that a 1 µg/m3 increase in PM2.5 raises the probability of devel-

oping asthma by 0.16 percentage points, which corresponds to a 2.2% increase relative

to the sample mean. We also examine the effects of PM2.5 on BMI, overweightness,

and obesity in rows (9)-(11). Our results indicate that PM2.5 does not lead to a higher

likelihood of becoming overweight or obese due to a decline in outdoor activities, which

contrasts with findings from countries with high PM2.5 concentrations. For example,

Deschenes et al. (2020) reported a significant positive effect of PM2.5 on body weight

in China, where the average PM2.5 concentration reaches 64.75 µg/m3.

One concern regarding the statistical power is that too many outcome variables in

Table 2 may lead to the multiple inference problem. Following the correction approach

in Anderson (2008), we obtain the corresponding summary index p-value, 0.045, which

indicates statistically significant general effects of PM2.5 on these outcomes.

Moreover, in row (12), we find that the impact of PM2.5 on the health index

is statistically significant at the 1% level, with a positive sign. This result suggests

that PM2.5 adversely affects individuals’ general health status even at low concentra-

tions (approximately 17.4 µg/m3 on average). As a robustness check, we investigate

whether the effects on the health index are primarily driven by mentally unwell days

and asthma. To do so, we construct an alternative health index measure that excludes

these components and re-estimate the model using this alternative measure. We find

that the coefficient for PM2.5 is 0.0047 and statistically significant at the 5% level,

which is very close to our baseline results.13 This suggests that the detrimental effect

of PM2.5 on overall health is reflected not solely in mentally unwell days and asthma,

but also in other health outcomes.

Our findings support the need for continued efforts to ambient air quality, even at

low levels of PM2.5. Policymakers may be hesitant to set new air quality standards

due to the associated costs, but our research calls for more stringent PM2.5 standards.

For example, a future rise in the national standard from 12 to 11 µg/m3 would be

beneficial to public health.

13When diabetes is further excluded from the health index, the corresponding coefficient (standard
error) is 0.0046 (0.0022). The corresponding coefficient (standard error) is 0.0060 (0.0022) when
excluding only diabetes and adding back mental health days and asthma.
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4.2 Robustness Checks

To enhance the robustness of our model specification, we perform various sensitivity

analyses, as presented in Table 3. We report our benchmark results from Table 2 in

column (1) for reference purposes.

First, we add state-by-month fixed effects in column (2) to capture state-specific

unobservable factors that vary over time but are constant across years. For instance,

some states may have distinct seasonal patterns that correlate with meteorological

phenomena and health outcomes, like the influenza season, which may bias our esti-

mates. We find that the results from column (2) are in accordance with our benchmark

findings.

In column (3), we introduce state-by-year fixed effects to the baseline model to

control for state-specific unobservable factors that may vary across years. For instance,

the impact of the Great Recession in 2008 on PM2.5 levels and health outcomes may

vary across states. However, upon including these fixed effects, we do not observe any

significant changes in the estimates or statistical significance of PM2.5.

In column (4), we employ a more flexible two-way cluster approach by adding

the state–year cluster, which accounts for the correlation of error terms within each

state–year block. We find that the more conservative standard errors are slightly

larger than those in column (1) for asthma and health index outcomes. Nonetheless,

the significance levels remain practically unaffected.

To account for the potential confounding effect of weather conditions that may be

simultaneously related to thermal inversion and health outcomes, we have controlled

for precipitation and daily minimum and maximum temperatures in Eq. (1). However,

due to data limitations, we cannot include all weather variables that may affect health

outcomes, and our estimates may still be biased with limited controls. To address this

concern, we exclude the weather controls in column (5). We find that our estimates

are very similar to the baseline results, suggesting that thermal inversion is less likely

to be correlated with other omitted weather conditions that we fail to control for.

The PM2.5 data are collected by monitoring stations. However, the number of these

stations varies throughout our sample period, as new stations were established and old

ones were decommissioned. A study by Grainger and Schreiber (2019) found evidence

of strategic selection of new monitoring stations, as they tend to be located in areas with

relatively clean air. To test whether our results are robust to variations in monitoring

locations, we apply a filter to exclude some monitors based on the requirement of

continuous operation. Specifically, we only include monitors that have operated for

at least five years during our sample period. We re-estimate Eq. (1) with the filtered

dataset and report the results in column (6). We only note minor discrepancies between
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the estimates in column (6) and those in column (1).

In our study, PM2.5 is defined as the maximum daily level in the past week, as

extreme values can have significant effects on short-term health outcomes. However,

this measure is not commonly used in extant literature. To test the robustness of

our results to the choice of PM2.5 measure, we replace the maximum daily level with

the average daily maximum PM2.5 for the past week in column (7) of Table 3. We

find that our main conclusions remain unchanged: the estimates are still statistically

significant for the three outcomes, although the magnitudes are slightly larger than the

benchmark results.

4.3 Heterogeneous Effects

Figure 2 illustrates the heterogeneous effects of PM2.5 on major health outcomes,

stratified by gender, race, socioeconomic status (SES), age cohorts, and employment

status. We find that PM2.5 has a greater adverse effect on the health index for those

who are unemployed, aged 45-64, have low SES,14 belong to non-White racial groups,

and are female. Furthermore, PM2.5 causes a larger increase in mentally unwell days

for those who are unemployed, have low SES, belong to non-White racial groups, and

are male. Additionally, we observe a significant effect of PM2.5 on asthma for those

who are unemployed and white.

These findings suggest that the adverse health effects of PM2.5 are more pro-

nounced for vulnerable groups, such as those who are unemployed, belong to non-White

racial groups, have low SES, and are middle-aged adults. Our results align with prior

studies15 and highlight the importance of addressing health disparities between differ-

ent socioeconomic groups. Improving air quality may be an effective way to reduce the

burden of PM2.5-related health issues, especially for vulnerable groups, and narrow

health inequality.

5 Extension

Our baseline model is designed to provide an unbiased estimate of the effect of

PM2.5. In this section, we describe a series of extensions and evaluate alternative

hypotheses for the adverse effect of PM2.5 on health outcomes.

14Low SES refers to individuals who have, at most, a high school degree and a household income of
no more than $25,000.

15For example, a recent study by Nguyen et al. (2021) revealed that the elderly and females expe-
rience the highest percentage change in mental health risk due to exposure to ozone and PM2.5. The
study also identified Asians and Hispanics as significant risk groups in California.
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5.1 Other Pollutants

We heavily rely on our identification strategies that utilize the number of thermal

inversions as an instrument for PM2.5 to draw our benchmark conclusion. However,

our understanding of the causal relationship between PM2.5 and health may be biased

by other coexisting pollutants such as PM10, sulfur dioxide (SO2), and carbon monox-

ide (CO) that can also be transported through thermal inversions and affect health

outcomes. To examine the possibility that other pollutants are biasing the coefficient

estimates, we assemble the county-day level data on other pollutants from the EPA,

which spans from 2001 to 2012. We replace PM2.5 with other pollutants in Eq. (2)

and examine whether our model can accurately identify their effects.

According to the results presented in Table 4, we observe that all coefficients are

statistically insignificant, and the F statistics are small, thus thermal inversion is not

a valid predictor for the other pollutants we tested. This finding suggests that our

identification strategy is exclusively capturing the effect of PM2.5 and not confounded

by other pollutants.16

5.2 Harvesting Effect and Autocorrelation of PM2.5

In order to investigate the possibility of the harvesting effect (Currie and Neidell,

2005) that may explain the positive effect of PM2.5 on health outcomes, we estimate

Eq. (1) with one- and two-week lagged PM2.5 as additional predictors in column (1) of

Table 5, and these lagged variables are also instrumented by the corresponding lagged

thermal inversion counts. The harvesting effect refers to the phenomenon where an

increase in pollution levels leads to a temporary acceleration of mortality among indi-

viduals who are already in poor health. In our study, we redefine the harvesting effect

to mean that PM2.5 accelerates the onset of diseases for those who would otherwise

have suffered from them a little later. If the harvesting effect exists, the coefficients

on the lagged PM2.5 would be significantly negative. However, our results in column

(1) show that the estimates of the current level of PM2.5 are statistically significant,

and the lagged PM2.5 coefficients are not significantly different from zero. Therefore,

we do not find any evidence supporting the existence of the harvesting effects in our

analysis.

Since PM2.5 concentration decreases over the sample period, the coefficients in our

model may capture future effects due to autocorrelation and thus be overestimated. To

investigate this, we include one- and two-week leads of PM2.5 and its contemporaneous

16Limited predictive power is less likely to be caused by smaller sample sizes due to missing values.
This is partly because the F-statistics are too small to indicate a strong predictor, and partly because
the number of observations is still greater than that of the health index in Table 2.
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level in column (2) of our analysis. However, we do not find any significant impact of

the leads, and the magnitudes of the current PM2.5 coefficients remain close to the

baseline results. Therefore, our model exclusively captures the impact of PM2.5 in the

current week.

5.3 Migration

Previous studies have highlighted avoidance behaviors in response to air pollution,

such as spending less time outdoors or relocating to areas with better air quality.

However, this behavior may mechanically drive our results if people who engage in

avoidance behaviors are more likely to live in areas with cleaner air and have better

health outcomes.

To address this issue, we build upon the work of Lai et al. (2021) and Chen et al.

(2022) and examine the effect of PM2.5 on migration patterns. Using data from the

Annual Social and Economic Supplement (ASEC) of the Current Population Survey for

the years 2001-2012, we focus on the labor force aged 25–64 and use the monthly PM2.5

concentration in March as the primary explanatory variable, along with the monthly

thermal inversion count as the IV. Based on information in the ASEC about whether

the respondent has changed their place of residence within the past year, we created two

indicators for moving within the same state and between states. A negative coefficient

of PM2.5 indicates that areas with lower levels of pollutants attract new residents to

move in.17

The results of our regression analysis are presented in Table 6. The F-statistics,

which are greater than 10, show that the thermal inversion is still a strong IV. None of

the estimates in columns (1) and (2) are statistically significant, therefore individuals

do not intentionally migrate to other counties within the same state or to other states

with low PM2.5 levels. These results imply that migration patterns cannot explain

the positive relationship between PM2.5 and adverse health outcomes found in our

analysis.

5.4 Health Behaviors

Poor air quality has the potential to, directly and indirectly, impact individual

health, but it remains unclear whether health behaviors play a mediating role in this

relationship. We investigate several health behaviors, including smoking, drinking,

exercising, and time spent on exercise, sleeping, and leisure activities. Our analysis

17The ASEC only provides more complete geographic information for the move-in county than the
previous residence county. Therefore, we merge the monthly PM2.5 data with the ASEC data using
the move-in county as the matching variable.
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draws on data from the 2001– 2012 BRFSS for the first three behaviors and from the

2004–2012 American Time Use Survey (ATUS) for the remaining three.18

In Table 7, we report the IV regression results for each health behavior. We

find no evidence of a significant association between PM2.5 and smoking, drinking,

exercise, sleep, or leisure time. These behaviors do not appear to mediate the observed

relationship between PM2.5 and health. Consequently, it is highly likely that PM2.5

directly impacts individual health without being mediated through changes in other

unobserved behaviors.

6 Cost–Benefit Analysis of PM2.5 Containment

In this section, we attempt to compare the cost and benefit of further reducing

PM2.5 concentration through a back-of-the-envelope calculation.

Table 8 replicates our baseline results using the IV approach, with the only dif-

ference being the use of a continuous measure of annual household income in order

to calculate the willingness to pay (WTP) for a marginal reduction in PM2.5 (Zhang

et al., 2017b; Sanduijav et al., 2021).19 Specifically, we use the midpoint of each in-

come category to generate a continuous measure of annual household income with the

income conservatively top-coded at $100,000.20

The results in column (1) of Table 8 suggest that a 1 µg/m3 decrease in PM2.5

concentration can reduce the number of days that a person feels mentally unwell by

about 0.112 on average each month, while a $1,000 increase in annual household income

can decrease the number of such days by 0.022. The estimated marginal benefit due to

better air quality, viewed as the WTP for PM2.5 containment, would be approximately

$220.67 billion in 2012 USD (= 0.1118/0.0219×121.08×0.357).21 Moreover, a decrease

of 1 µg/m3 in PM2.5 concentration is associated with a 0.2 percentage point decline in

the probability of developing asthma (column (2)), resulting in an estimated marginal

benefit of $139.48 billion in 2012 USD for reducing asthma (= 0.0016/0.0001×121.08×
0.072).22 Combining the marginal benefits related to mental health and asthma, the

18In the ATUS, county information is available starting from 2004. The ATUS collects data on the
amount of time individuals spend on various activities, including paid work, childcare, volunteering,
and socializing. For our analysis, we focus on individuals in the labor force aged 25-64.

19Suppose the health outcome H is precisely equal to the total utility for each household. Let P
represent the demand for PM2.5 reduction, and I represent the household income. We can calcu-
late the marginal rate of substitution (MRS) as (∂H/∂P )/(∂H/∂I) = βP /βI , where βP and βI are
the coefficients on PM2.5 and household income in the regression, respectively. This MRS can be
interpreted as the WTP for a 1-unit decrease in PM2.5 while holding the health status constant.

20This continuous income variable is finally adjusted to 2012 USD.
21The coefficients on PM2.5 and household income are 0.1118 and 0.0219, respectively. Their ratio

represents the WTP for a 1-unit decrease in PM2.5. The number of households in 2012, 121.08 million,
is sourced from the US Census Bureau. The prevalence of mental health, 35.7%, is from Table 1.

22The coefficients on PM2.5 and household income are 0.0016 and 0.0001, respectively. The asthma
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WTP is estimated to be $360.15 billion. Moreover, to show the robustness of our

estimates, we further calculate the WTP using the health index results in column

(3), and the corresponding value is approximately $492.39 billion (= 0.0061/0.0015×
121.08), which is greater than the total WTP related to mental health and asthma as

the health index contains more than just these two health outcomes.

To estimate the cost of PM2.5 containment, we refer to the Regulatory Impact

Analysis conducted by the EPA, which reports the total annualized engineering costs for

reducing PM2.5 concentration to 13, 12, and 11 µg/m3 as $2.9 million, $69 million, and

$270 million, respectively.23 Based on these figures, we calculate the annual marginal

cost of reducing PM2.5 by 1 unit to range from $66.1 million to $201 million in 2006

USD24 or $75 million to $229 million in 2012 USD (CPI=1.14).

Overall, the estimated marginal benefits of PM2.5 containment ($360.15 billion -

$492.39 billion) far exceed the estimated marginal costs of $75 million - $229 million,

which suggests that developing policies to reduce the nationwide PM2.5 level, such as

improving the current PM2.5 national standard by 1 µg/m3, could produce significantly

greater social benefits.

7 Conclusion

This paper examines the relationship between PM2.5 and health outcomes among

the working-age population, using the BRFSS data from 2001 to 2012. Leveraging

the instrumental variable approach, we find significant effects of PM2.5 on the health

index, mentally unwell days, and the probability of developing asthma. These findings

suggest that even low concentrations of PM2.5 have detrimental impacts on individuals’

health.

Specifically, our study reveals that a one-unit increase in the PM2.5 level is as-

sociated with a 0.11-day decrease in mental health severity. This contributes to the

growing literature exploring the connection between air pollution and mental health, as

evidenced by previous works (Pun et al., 2017; Vert et al., 2017; Zhang et al., 2017b,a;

Xue et al., 2019; Roberts et al., 2019; Shi and Yu, 2020; Bakolis et al., 2021; Sanduijav

et al., 2021). For instance, Pun et al. (2017) found that PM2.5 was linked to de-

pressive and anxiety symptoms, with stronger associations observed among individuals

with lower socioeconomic status or specific health-related characteristics. Our study

prevalence is 0.072 from Table 1.
23See Tables 4-2 and 7-4 in EPA Regulatory Impact Analysis (June 2012): https://www.epa.gov/

sites/default/files/2020-07/documents/naaqs-pm_ria_proposed_2012-06.pdf.
24We compute the annualized marginal cost of decreasing PM2.5 by one unit from 13 to 12 µg/m3 as

$66.1 million (=$69 million-$2.9 million) and from 12 to 11 µg/m3 as $201 million (=$270 million-$69
million).

18

https://www.epa.gov/sites/default/files/2020-07/documents/naaqs-pm_ria_proposed_2012-06.pdf
https://www.epa.gov/sites/default/files/2020-07/documents/naaqs-pm_ria_proposed_2012-06.pdf


differs from these previous works in terms of the target group and measures of mental

health. By examining detailed information on mentally unwell days, we also discern

that individuals with moderately severe mental issues are most affected.

Our results also confirm the well-documented sensitivity of asthma to air pollu-

tants, as supported by previous literature (Neidell, 2004; Zhang et al., 2020; Aguilera

et al., 2021). Specifically, we observe a 0.16 percentage point increase in asthma inci-

dence for each one-unit rise in PM2.5 concentration. However, our paper distinguishes

itself from others by employing a more nationally representative sample and focusing

on the working-age population, including individuals with mild symptoms that do not

require hospitalization. Furthermore, there is limited research on the causal effects

of PM2.5 on asthma incidence using US data. Some studies have utilized alterna-

tive air pollutants as the primary regressor, while others have not established causal

identification.

Our analysis of heterogeneous effects reveals that high-risk groups, such as the un-

employed, non-Whites, the elderly, and individuals with low SES, experience a decline

in health due to PM2.5 exposure. This highlights the importance of addressing health

inequalities between different socioeconomic groups. Improving air quality can be an

effective measure in narrowing these potential disparities, as vulnerable groups stand

to benefit more from such improvements.

Moreover, we address several alternative explanations for the positive relationship

between PM2.5 and adverse health outcomes. Firstly, our findings do not support

the hypothesis that increased PM2.5 concentrations incentive individuals to relocate

to counties with better air quality, thus ruling out the migration patterns as an ex-

planation for the positive association. Additionally, we find that individuals do not

significantly alter their health behaviors in response to high PM2.5 concentrations. It

is highly likely that PM2.5 directly affects individual health without being mediated

through changes in avoidance behaviors.

Understanding the impact of low PM2.5 levels on health is crucial for shaping future

air quality policies. Our cost-benefit analysis demonstrates that strengthening the

nationwide PM2.5 standard would yield overall positive social benefits. Furthermore,

if we take into account the labor market benefits associated with the effects of air

pollution on the workforce, as observed in other studies (Graff Zivin and Neidell, 2012;

Li and Li, 2022), reducing the average PM2.5 concentration by 1 µg/m3 would result

in benefits that significantly outweigh the costs. These findings offer valuable insights

for informing future environmental policy formulation.

19



References

Aguilera, Rosana, Thomas Corringham, Alexander Gershunov, and Tarik

Benmarhnia. 2021. “Wildfire smoke impacts respiratory health more than fine par-

ticles from other sources: observational evidence from Southern California.” Nature

Communications 12 (1): 1493.

Anderson, Michael L. 2008. “Multiple inference and gender differences in the effects

of early intervention: A reevaluation of the Abecedarian, Perry Preschool, and Early

Training Projects.” Journal of the American statistical Association 103 (484): 1481–

1495.

Anderson, Michael L. 2020. “As the wind blows: the effects of long-term exposure

to air pollution on mortality.” Journal of the European Economic Association 18 (4):

1886–1927.

Arceo, Eva, Rema Hanna, and Paulina Oliva. 2016. “Does the effect of pollution

on infant mortality differ between developing and developed countries? Evidence

from Mexico City.” The Economic Journal 126 (591): 257–280.

Arroyo, Virginia, Julio Dı́az, P Salvador, and Cristina Linares. 2019. “Impact

of air pollution on low birth weight in Spain: an approach to a National Level Study.”

Environmental Research 171 69–79.

Austin, Wes, Stefano Carattini, John Gomez-Mahecha, and Michael F

Pesko. 2023. “The effects of contemporaneous air pollution on COVID-19 morbidity

and mortality.” Journal of Environmental Economics and Management 119 102815.

Bakolis, Ioannis, Ryan Hammoud, Robert Stewart et al. 2021. “Mental health

consequences of urban air pollution: prospective population-based longitudinal sur-

vey.” Social Psychiatry and Psychiatric Epidemiology 56 (9): 1587–1599.

Barreca, Alan I, Matthew Neidell, and Nicholas J Sanders. 2021. “Long-run

pollution exposure and mortality: evidence from the Acid Rain Program.” Journal

of Public Economics 200 104440.

Beland, Louis-Philippe, and Vincent Boucher. 2015. “Polluting politics.” Eco-

nomics Letters 137 176–181.

Bell, Michelle L, Keita Ebisu, and Kathleen Belanger. 2007. “Ambient air

pollution and low birth weight in Connecticut and Massachusetts.” Environmental

Health Perspectives 115 (7): 1118–1124.

Bobak, Martin. 2000. “Outdoor air pollution, low birth weight, and prematurity.”

Environmental Health Perspectives 108 (2): 173–176.

Chay, Kenneth Y, and Michael Greenstone. 2003. “The impact of air pollution

on infant mortality: evidence from geographic variation in pollution shocks induced

by a recession.” The Quarterly Journal of Economics 118 (3): 1121–1167.

20



Chay, Kenneth Y, and Michael Greenstone. 2005. “Does air quality matter?

Evidence from the housing market.” Journal of Political Economy 113 (2): 376–424.

Chen, Shuai, Paulina Oliva, and Peng Zhang. 2022. “The effect of air pollution

on migration: evidence from China.” Journal of Development Economics 156 102833.

Chen, Shuai, and Dandan Zhang. 2021. “Impact of air pollution on labor produc-

tivity: evidence from prison factory data.” China Economic Quarterly International

1 (2): 148–159.

Chu, Chen, Haiya Zhang, Shijie Cui et al. 2019. “Ambient PM2.5 caused

depressive-like responses through Nrf2/NLRP3 signaling pathway modulating in-

flammation.” Journal of Hazardous Materials 369 180–190.

Colmer, Jonathan, Dajun Lin, Siying Liu, and Jay Shimshack. 2021. “Why

are pollution damages lower in developed countries? Insights from high-income,

high-particulate matter Hong Kong.” Journal of Health Economics 79 102511.

Currie, Janet, and Matthew Neidell. 2005. “Air pollution and infant health:

what can we learn from California’s recent experience?” The Quarterly Journal of

Economics 120 (3): 1003–1030.

Currie, Janet, Matthew Neidell, and Johannes F Schmieder. 2009. “Air pol-

lution and infant health: lessons from New Jersey.” Journal of Health Economics 28

(3): 688–703.

Currie, Janet, and Reed Walker. 2011. “Traffic congestion and infant health:

evidence from E-ZPass.” American Economic Journal: Applied Economics 3 (1):

65–90.
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Figures

Figure 1: Trends of PM2.5 Concentration and Thermal Inversion

Notes: This figure plots the national time trends of the key regressor, PM2.5, and the instrumental
variable (IV), thermal inversion, based on the county-level data. PM2.5 represents the annual average
of the daily maximum measured in µg/m3, while thermal inversion is measured by the yearly average
of occurrences over the past week.
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Figure 2: Heterogeneous Effects on Health

Notes: These figures exhibit the IV estimates, along with the corresponding 95% confidence intervals,
stratified by gender, race, socioeconomic status, age cohorts, and employment status. ”Low SES”
refers to individuals with education attainment of high school or below and a household annual
income of no more than $25,000. All regressions include controls for demographics, weather variables,
year, month, weekend, and county fixed effects. Standard errors are reported in parentheses and are
clustered at the county level.
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Tables

Table 1: Summary Statistics for Major Variables

Variable Mean SD Obs

Health outcomes:
Fair or Poor Health 0.107 0.309 1,161,110
1{Physically Unwell Days>0} 0.325 0.468 1,106,275
# of Physically Unwell Days 7.562 8.890 362,871
1{Mentally Unwell Days>0} 0.357 0.479 1,104,706
# of Mentally Unwell Days 8.976 9.392 397,306
1{Activity Limitation Days>0} 0.373 0.484 580,657
# of Activity Limitation Days 7.263 8.434 216,616
Asthma 0.072 0.259 1,155,889
Body Mass Index(BMI) 27.228 5.292 1,115,118
1{BMI≥25} (Overweight) 0.631 0.483 1,115,118
1{BMI≥30} (Obesity) 0.249 0.433 1,115,118
Health Index -0.145 0.428 540,403
Air Pollutant:
PM2.5 17.417 10.773 1,161,110
Instrument:
# of Thermal Inversions 0.319 1.092 1,161,110

Notes: This table shows summary statistics, including sample means, standard deviations, and
the number of observations for all outcomes, the key regressor, and the instrumental variable used
in the analysis. The indicator 1{·} represents a binary variable, which equals one if the condition
is satisfied and zero otherwise. For physically unwell days, mentally unwell days, and activity
limitation days, the value of zero is excluded since we focus on the intensive margin. PM2.5
is measured in µg/m3. The sample includes employed individuals, unemployed individuals, and
homemakers aged 25-64. The sampling weight from BRFSS is applied for computation.
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Table 2: Effects of PM2.5 on Health Outcomes

Outcomes OLS IV Obs
First-stage
F-statistic

(1) Fair or Poor Health 0.0001 0.0011 1,161,110 16.2388
(0.0001) (0.0008)

(2) 1{Physically Unwell Days>0} 0.0001 0.0013 1,108,666 17.3293
(0.0001) (0.0014)

(3) Physically Unwell Days -0.0046* 0.0539 363,754 19.2929
(0.0026) (0.0407)

(4) 1{Mentally Unwell Days>0} 0.0000 -0.0017 1,107,150 17.3187
(0.0001) (0.0014)

(5) Mentally Unwell Days 0.0026 0.1106** 398,213 19.5126
(0.0026) (0.0475)

(6) 1{Activity Limitation Days>0} 0.0001 -0.0007 582,105 18.6585
(0.0001) (0.0021)

(7) Activity Limitation Days -0.0014 0.0595 217,215 21.7266
(0.0037) (0.0434)

(8) Asthma 0.0001 0.0016** 1,158,573 16.2230
(0.0001) (0.0007)

(9) Body Mass Index (BMI) -0.0008 -0.0015 1,117,669 15.3863
(0.0013) (0.0124)

(10) Overweight -0.0001 0.0005 1,117,669 15.3863
(0.0001) (0.0011)

(11) Obesity 0.0001 -0.0001 1,117,669 15.3863
(0.0001) (0.0010)

(12) Health Index 0.0001 0.0059*** 540,403 17.1629
(0.0002) (0.0019)

Notes: This table presents the baseline estimates of Eq. (1) using both OLS and IV approaches.
The covariates include the demographics and weather variables in Table A1. Each row shows the
OLS and IV estimates, along with the number of observations and the first-stage F-statistic for
each health outcome. All regressions control for year, month, weekend, and county fixed effects.
Standard errors are reported in parentheses and are clustered at the county level. The Anderson
(2008) summary index p-value is 0.045 to account for the multiple inference problem. Significance
levels: * p < 0.1, ** p < 0.05, *** p < 0.01.
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Table 3: Robustness Checks

Baseline
State-
by-month
FES

State-
by-year
FEs

Two-way
Cluster

No
Weather
Controls

Monitors
Exist for
>=5 Years

Alternative
PM2.5

(1) (2) (3) (4) (5) (6) (7)

Panel A: Mentally
Unwell Days
PM2.5 0.1106** 0.0981** 0.1135** 0.1106** 0.0940** 0.1046** 0.1537***

(0.0475) (0.0416) (0.0460) (0.0436) (0.0427) (0.0460) (0.0590)
Observations 398,213 398,213 398,213 398,213 398,213 383,183 398,213

Panel B: Asthma
PM2.5 0.0016** 0.0016*** 0.0016** 0.0016** 0.0013** 0.0016** 0.0022**

(0.0007) (0.0006) (0.0007) (0.0008) (0.0007) (0.0008) (0.0010)
Observations 1,158,573 1,158,573 1,158,573 1,158,573 1,158,573 1,112,265 1,158,573

Panel C: Health Index
PM2.5 0.0059*** 0.0053*** 0.0059*** 0.0059*** 0.0052*** 0.0058*** 0.0082***

(0.0019) (0.0015) (0.0019) (0.0021) (0.0018) (0.0019) (0.0023)
Observations 540,403 540,403 540,403 540,403 540,403 520,056 540,403

Notes: All regressions include controls for demographics, year, month, weekend, and county fixed
effects. Column (1) shows the benchmark results from Table 2. Column (2) adds state-by-month
fixed effects. Column (3) includes state-by-year fixed effects. Column (4) employs a two-way
cluster at the county and state-year levels. Column (5) excludes the weather controls. Column
(6) considers only the PM2.5 readings from monitoring sites that have operated for at least five
years during our sample period. Column (7) uses the average daily maximum PM2.5 in the past
week as the regressor. Standard errors, shown in parentheses, are clustered at the county level.
Significance levels: * p < 0.1, ** p < 0.05, *** p < 0.01.

Table 4: First Stage: Effects of Thermal Inversion on Other Pollutants

PM10 SO2 CO Ozone

(1) (2) (3) (4)

Thermal Inversion 0.3894 0.0324 0.0126 -0.0004
(0.3867) (0.2357) (0.0262) (0.0004)

First-stage F-statistic 1.0139 0.0189 0.2322 0.7739
Observations 772,913 611,424 664,806 798,835

Notes: The daily data for these pollutants were collected from the EPA. Each pollutant is defined
as the maximum value within the past week. All regressions control for demographics, weather
variables, year, month, weekend, and county fixed effects. Standard errors, shown in parentheses,
are clustered at the county level. Significance levels: * p < 0.1, ** p < 0.05, *** p < 0.01.

30



Table 5: Harvesting Effect and Autocorrelation

Lags Leads
(1) (2)

Panel A: Mentally Unwell Days
PM2.5 0.0984** 0.0921**

(0.0460) (0.0413)
PM2.5t−1 or PM2.5t+1 0.0507* 0.0485

(0.0301) (0.0601)
PM2.5t−2 or PM2.5t+2 0.0066 0.0624

(0.0401) (0.0481)
Observations 392,077 391,614

Panel B: Asthma
PM2.5 0.0015** 0.0014**

(0.0008) (0.0007)
PM2.5t−1 or PM2.5t+1 0.0010 0.0008

(0.0006) (0.0010)
PM2.5t−2 or PM2.5t+2 0.0002 0.0007

(0.0006) (0.0007)
Observations 1,140,428 1,139,237

Panel C: Health Index
PM2.5 0.0050*** 0.0047***

(0.0019) (0.0016)
PM2.5t−1 or PM2.5t+1 0.0028 0.0048

(0.0020) (0.0032)
PM2.5t−2 or PM2.5t+2 0.0024 0.0035

(0.0024) (0.0023)
Observations 531,997 531,446

Notes: All regressions control for demographics, year, month, weekend, and county fixed effects.
In Column (1), we add one- and two-week lagged PM2.5 into the model, where PM2.5t−1 and
PM2.5t−2 represent the maximum PM2.5 during the past 8-14 days and 15-21 days, respectively.
In Column (2), we add one- and two-week leads of PM2.5, where PM2.5t+1 and PM2.5t+2 represent
the maximum PM2.5 for the leading 1-7 days and 7-15 days, respectively. Note that the results in
columns (1)-(2) are still IV estimates. For example, column (1) uses the thermal inversion counts
for the past 1-7 days, 8-14 days, and 15-21 days as instruments for current and lagged PM2.5.
In this way, we use either lagged or leading IVs in columns (1)-(2) to predict PM2.5. Standard
errors, shown in parentheses, are clustered at the county level. Significance levels: * p < 0.1, **
p < 0.05, *** p < 0.01.
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Table 6: Effects of PM2.5 on Migration

Migration within 1 Year

Within State Across State
(1) (2)

PM2.5 -0.0024 -0.0021
(0.0015) (0.0015)

First-stage F-statistic 20.9460 20.9237
Observations 360,766 367,579

Notes: PM2.5 is measured at the county-month level since ASEC does not provide the interview
date. All regressions control for demographics, weather variables, year, month, and county fixed
effects. In Columns (1)-(2), we examine the effects of PM2.5 on migration within the state or
county (Column(1)) and within or between states (Column(2)) in the past year. The first-stage
F-statistic is reported. Standard errors, shown in parentheses, are clustered at the county level.
The CPS sampling weight is used for estimation. Significance levels: * p < 0.1, ** p < 0.05, ***
p < 0.01.

Table 7: Effects of PM2.5 on Health Behaviors

Current
Smoker

Binge
Drinking

Not Doing
Exercise

Exercise
Time

Sleeping
Time

Leisure
Time

(1) (2) (3) (4) (5) (6)

PM2.5 -0.0001 0.0006 -0.0007 -0.3536 -0.3282 0.8154
(0.0012) (0.0011) (0.0009) (0.9236) (1.8339) (2.7553)

First-stage F-statistic 16.2215 15.9623 16.0243 10.2945 10.2945 10.2945
Dep Mean 0.1984 0.1798 0.2088 14.9084 498.7101 180.2121
Observations 1,159,109 1,140,124 1,158,833 21,798 21,798 21,798

Notes: PM2.5 is measured at the county-day level. All regressions control for demographics,
weather variables, year, month, weekend, and county fixed effects. The dependent variables in
columns (1)-(3) are dummies for smoking, binge drinking, and lack of exercise, respectively. In
columns (4)-(6), the dependent variables represent the duration in minutes per day spent on
exercise, sleeping, and leisure activities, respectively. For smoking, we categorize individuals as
current smokers if they smoke every day or on some days. Binge drinking is defined as adults
consuming five or more drinks on a single occasion. The first-stage F-statistic and the sample
mean of the outcome variables are reported. Standard errors are reported in parentheses and are
clustered at the county level. Significance levels: * p < 0.1, ** p < 0.05, *** p < 0.01.
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Table 8: Effects of PM2.5 and Household Income on Health Outcomes

Mentally
Unwell Days

Asthma Health Index

(1) (2) (3)
PM2.5 0.1118** 0.0016** 0.0061***

(0.0471) (0.0007) (0.0020)

Household Income -0.0219*** -0.0001*** -0.0015***
(0.0012) (0.0000) (0.0000)

Observations 398,213 1,158,573 540,403

Notes: All regressions control for demographics, weather variables, year, month, weekend, and
county fixed effects. They differ from the baseline results in that they include continuous annual
household income (in $1,000), which has been adjusted by the CPI in 2012 USD. Standard errors
are reported in parentheses and are clustered at the county level. Significance levels: * p < 0.1,
** p < 0.05, *** p < 0.01.
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Appendix

Table A1: Summary Statistics for Demographics and Weather Controls

Variable Mean SD
Demographic Variables:
Male 0.503 0.500
Age 30-39 0.273 0.446
Age 40-49 0.271 0.444
Age 50-59 0.209 0.407
Age 60-64 0.055 0.228
Black only 0.113 0.317
Hispanic 0.175 0.380
Other races 0.076 0.265
Less than high school 0.095 0.293
College but no degree 0.260 0.439
College degree or above 0.414 0.493
Never married 0.146 0.354
Other marital status 0.190 0.392
Self employed 0.114 0.318
Unemployed for more than 1 year 0.034 0.181
Unemployed for less than 1 year 0.044 0.205
Homemaker 0.086 0.281
Income $15k 0.068 0.253
Income 15k−25k 0.121 0.326
Income 25k−35k 0.101 0.301
Income 35k−50k 0.147 0.355
Any health insurance 0.838 0.369
Weather Variables:
Precipitation 0.102 0.150
Maximum temperature 46.487 17.663
Minimum temperature 66.370 20.483

Notes: This table shows the statistical summary for the demographic variables and weather
controls used in the analysis. The number of observations is 1,161,110. Demographic information
is obtained from the BRFSS, while weather variables are sourced from PRISM Spatial Climate
datasets. The sampling weight from BRFSS is applied in the computation.
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Table A2: First Stage Results: Effects of Thermal Inversion on PM2.5

PM2.5
(1) (2) (3) (4) (5)

Thermal Inversion 0.8231*** 0.7495*** 0.8389*** 0.7807*** 0.7495***
(0.2143) (0.1860) (0.1183) (0.1817) (0.1832)

Weather Controls Y Y Y Y
Time FE Y Y Y Y Y
County FE Y Y Y Y Y
State-by-month FE Y
State Linear Trend Y
Two-way Cluster Y
First-stage F-statistic 14.7535 16.2388 50.2916 18.4658 16.7429
Observations 1,161,110 1,161,110 1,161,110 1,161,110 1,161,110

Notes: This table reports the first-stage results under different specifications. Column (1) does
not control for weather conditions. Column (2) represents the first-stage results of the baseline
model in Table 2. Column (3) adds the state-by-month fixed effects. Column (4) considers the
state-specific linear time trend. Column (5) employs a two-way cluster at the county and state-
year levels. Standard errors, shown in parentheses, are clustered at the county level by default.
Significance levels: * p < 0.1, ** p < 0.05, *** p < 0.01.

Table A3: Effects of Thermal Inversion on Health Behaviors

Current
Smoker

Binge
Drinking

Not Doing
Exercise

Exercise
Time

Sleeping
Time

Leisure
Time

(1) (2) (3) (4) (5) (6)
Thermal Inversion -0.0000 0.0004 -0.0005 -0.2417 -0.2243 0.5572

(0.0009) (0.0008) (0.0007) (0.6527) (1.2693) (1.8196)
Observations 1,159,109 1,140,124 1,158,833 21,798 21,798 21,798

Notes: This table gives circumstantial evidence on the validity of exclusion restriction by showing
that our IV is orthogonal to health-related behaviors. All regressions control for demographics,
weather variables, year, month, weekend, and county fixed effects. The first three outcome vari-
ables come from BRFSS (2001-2012), while the last three variables are from ATUS (2004-2012).
Standard errors, shown in parentheses, are clustered at the county level. Significance levels: * p
< 0.1, ** p < 0.05, *** p < 0.01.
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Table A4: Balance Test

(1) (2) (3) (4) (5) (6) (7) (8)
Male Age White Black Hispanic Other Races <High School High School

Thermal Inversion 0.0008 0.0210 -0.0007 -0.0008 0.0006 0.0009 0.0007 0.0009
(0.0010) (0.0212) (0.0007) (0.0005) (0.0007) (0.0007) (0.0010) (0.0009)

Observations 1,176,774 1,176,774 1,176,774 1,176,774 1,176,774 1,176,774 1,176,774 1,176,774
(9) (10) (11) (12) (13) (14) (15) (16)
College but
No Degree

College Degree
or Above

Married Never Married
Other Marital
Status

Income <15k Income 15k-25k Income 25k-35k

Thermal Inversion -0.0014 -0.0002 -0.0009 0.0006 0.0002 0.0002 -0.0001 0.0001
(0.0009) (0.0008) (0.0009) (0.0006) (0.0007) (0.0004) (0.0007) (0.0005)

Observations 1,176,774 1,176,774 1,176,774 1,176,774 1,176,774 1,176,774 1,176,774 1,176,774
(17) (18) (19) (20) (21) (22) (23) (24)

Income 35k-50k Income 50k+
Any Health
Insurance

Self Employed
Employed
for Wages

Unemployed
for >1 year

Unemployed
for <1 year

Homemaker

Thermal Inversion -0.0004 0.0003 0.0012* 0.0004 -0.0004 0.0001 -0.0001 0.0001
(0.0007) (0.0007) (0.0006) (0.0006) (0.0010) (0.0004) (0.0004) (0.0005)

Observations 1,176,774 1,176,774 1,176,774 1,176,774 1,176,774 1,176,774 1,176,774 1,176,774

Notes: This table reports the results of balance tests using demographics as the outcome variable. The sample is restricted to adults aged 25-64. All
regressions control for weather variables, year, month, weekend, county fixed effects, and demographics, with the exception of the one used as the outcome.
Standard errors are reported in parentheses and are clustered at the county level. Significance levels: * p < 0.1, ** p < 0.05, *** p < 0.01.
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Table A5: The Impact on Indicators for Different Mentally Unhealthy Days

Mentally Unwell Days
≥ 5 days ≥ 10 days ≥ 15 days ≥ 20 days ≥ 25 days
(1) (2) (3) (4) (5)

PM2.5 0.0036* 0.0042* 0.0038** 0.0054** 0.0035
(0.0020) (0.0023) (0.0017) (0.0023) (0.0024)

Observations 398,213 398,213 398,213 398,213 398,213

Notes: The outcome variables are five indicators for the number of days that the respondent
felt mentally unwell: ≥5, ≥10, ≥15, ≥20, and ≥25. All regressions control for demographics,
weather variables, year, month, weekend, and county fixed effects. Standard errors are reported
in parentheses and are clustered at the county level. Significance levels: * p < 0.1, ** p < 0.05,
*** p < 0.01.
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Figure A.1: Geographic Variation for PM2.5 and Thermal Inversion

(a) County-level PM2.5

(b) County-level Thermal Inversion Count

Notes: The upper panel displays the maps depicting the monthly average of PM2.5 by county in 2001
and 2012. The bottom panel illustrates the monthly count of thermal inversions by county in 2001
and 2012.
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Figure A.2: Recall Error and Alternative Measures of PM2.5

39



40



Notes: These figures exhibit the IV estimates along with the 95% confidence interval using different
measures of PM2.5. For each graph, circle markers report IV estimates using maximum PM2.5 over
the past 7-30 days, while diamond markers show IV estimates using average daily maximum PM2.5
over the past 7-30 days. The instrument is the total count of thermal inversions for the corresponding
periods. Cross marks indicate the F-statistic of the first-stage equation with the null hypothesis that
thermal inversion has no effect on PM2.5. All regressions control for demographics, weather variables,
year, month, weekend, and county fixed effects. Standard errors in parentheses are clustered at the
county level.
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